Sistemi dinamici integrabili : cosa sono e alcuni esempi introduttivi

Sistemi dinamici integrabili : cosa sono e alcuni esempi introduttivi
Tempo di lettura: 5 minuti

Cos’è un sistema integrabile? Ci sono esempi semplici di sistemi integrabili? In questo articolo cercheremo di capire il concetto di integrabilità di un sistema dinamico, partendo da degli esempi e derivando quindi qualche risultato più generale.

sistema integrabile

Introduzione al concetto di integrabilità

In un vecchio articolo sul sito abbiamo parlato di cosa sia un integrale primo ed un sistema dinamico (se vuoi lo trovi qui https://www.mathone.it/integrale-primo/ ), oggi invece andremo a scoprire quando un sistema sia integrabile.

Cosa si può intuire dal termine “integrabile”? Supponiamo di partire da una semplice equazione differenziale : $x'(t) = 6x(t)$. Secondo te questa è integrabile?

Beh, intuitivamente sì, nel senso che possiamo integrarla, ovvero possiamo calcolarne la soluzione in forma chiusa. Infatti la funzione $x(t) = x(0)e^{6t}$ risolve l’equazione, per cui siamo riusciti ad integrare l’equazione.

Bene, questo era un esempio semplice potresti dire, ma come possiamo capire se un sistema più complicato sia o meno integrabile? Cosa vuol dire che esso è integrabile?

Intanto definiamo più rigorosamente un generico sistema dinamico, seguendo però un approccio geometrico, ovvero parlando di campi vettoriali invece che di sistemi di equazioni differenziali. Riguardo la distinzione tra questi due punti di vista puoi vedere un video che ho fatto qui sotto:

Definiamo quindi un campo vettoriale $X:\mathbb{R}^n\rightarrow\mathbb{R}^n$ che sia di classe $\mathcal{C}^1(\mathbb{R}^n,\mathbb{R})$, così che valga il

Integrabilità algebrica: teorema di integrabilità di Lie

Supponiamo di avere ancora un generico campo vettoriale $X=X(x_1,…,x_n)$ che sia sufficientemente regolare, per esempio $\mathcal{C}^1$. Supponiamo inoltre che esso ammetta $(n-1)$ integrali primi che siano funzionalmente indipendenti.

Prima di tutti specifichiamo cosa si intenda con quest’ultima frase. Vuol dire che ci sono $(n-1)$ funzioni $f_1,…,f_{n-1}:\mathbb{R}^n\rightarrow \mathbb{R}$ che soddisfano le due seguenti proprietà:

  • $\mathcal{L}_Xf_i = \nabla f_i \cdot X = 0 ,\;\forall i=1,…,n-1,$

  • $\nabla f_i \text{ e }\nabla f_j \text{ non sono paralleli per ogni }i\neq j.$

Allora se ciò è vero, possiamo integrare il sistema. Nel caso ci sia un integrale primo, come spiego nel video, abbiamo che gli insiemi di livello di ognuna di queste funzioni è invariante. Inoltre essendo che i gradienti di queste funzioni non sono paralleli, ovvero non sono linearmente dipendenti, ciò vuol dire che gli insiemi di livello di questi integrali primi sono tutti diversi.

Quest’ultimo fatto è dovuto alla proprietà geometrica del gradiente di essere localmente ortogonale agli insiemi di livello di $f$, per esempio se $f(x,y)=x^2+y^2$, il gradiente è $\nabla f (x,y) = [2x,2y]^T$ che, come puoi vedere nel grafico qui sotto, è localmente ortogonale alle circonferenze che definiscono gli insiemi di livello di $f$.

Cosa vuol dire nel concreto questo? Vuol dire che se fissiamo un punto iniziale da cui lasciare evolvere la dinamica, $y_0\in\mathbb{R}^n$, sappiamo che per ogni $i=1,…,n-1$, la dinamica evolverà per ogni tempo $t$ nell’insieme di livello dove vive $y_0$ di $f_i$.

Quindi supponiamo che $f_i(y_0)=c_i\in\mathbb{R}$ per ogni $i=1,…,n-1$. Allora abbiamo che l’orbita del punto $y_0$ rispetto al campo vettoriale $X$, ovvero l’insieme

$$orb(y_0) = \{\Phi_t(y_0):\,t\in\mathbb{R}\}\subset\mathbb{R}^n$$

è contenuto nell’insieme di livello $\{x\in\mathbb{R}^n : f_i(x)=c_i\}$ per ogni $i=1,…,n-1$. Di conseguenza esso apparterrà all’insieme di livello della funzione vettoriale

$$ F : \mathbb{R}^n\rightarrow \mathbb{R}^{n-1} ,\quad F(x):=(f_1(x),…,f_{n-1}(x))$$

associato al punto $\boldsymbol{c}=(c_1,…,c_{n-1})\in\mathbb{R}^{n-1}$. Essendo gli integrali primi indipendenti, questa è una funzione suriettiva e l’insieme di livello $\{x\in\mathbb{R}^n: \,F(x)=\boldsymbol{c}\}$ è di dimensione 1, ed è invariante rispetto alla dinamica. Di conseguenza sappiamo che le orbite sono contenute in questi sottoinsiemi invarianti.

In più si vede facilmente che il sistema può essere integrato esplicitamente, questo è anche chiamato teorema di integrabilità di Lie.

Giusto per essere chiari, il fatto che sia integrabile esplicitamente non vuol dire che non rimarranno integrali da calcolare nell’espressione finale, vuol dire che a meno di essere in grado di calcolare quegli integrali, abbiamo un’espressione esplicita. Spesso infatti si incontrano i cosiddetti integrali ellittici che non sono risolvibili, ma ciò non è un problema o almeno non è un ostacolo verso la definizione di integrabilità.

Per accertarci della possibilità di integrare il sistema e trovarne l’integrale generale in forma chiusa, senza perderci in formalismi eccessivi, supponiamo di definire $n-1$ variabili come segue: $y_1=f_1$, …., $y_{n-1}=f_{n-1}$. Prendiamo poi una $n-$esima variabile da esse indipendente (questa esiste visto che abbiamo uno spazio di dimensione $n$: $\mathbb{R}^n$), chiamiamola $y_n$.

Allora siccome, per quanto abbiamo visto prima riguardo gli integrali primi, gli insiemi di livello di queste funzioni sono invarianti, esiste una funzione $g:\mathbb{R}^n\rightarrow \mathbb{R}$ tale che il sistema può essere riscritto, nelle nuove coordinate $\boldsymbol{y}$ come segue:

$$ \dot{y}_1 = 0 $$

$$ …. $$

$$ \dot{y}_{n-1} = 0 $$

$$ \dot{y}_n = g(y_1,…,y_n) $$

dove l’ultima equazione può essere integrata e possiamo quindi risolvere in forma chiusa il sistema.

Proviamo a ragionare più nel dettaglio su questa nuova formulazione del sistema. Quello che abbiamo fatto è trasformare il campo vettoriale di partenza, che era nelle coordinate $\boldsymbol{x}=(x_1,…,x_n)$, nelle nuove coordinate $\boldsymbol{y}=(y_1,…,y_n)$ che non sono prese a caso ma sono “speciali”. Per precisazione, questa operazione si dice coniugazione topologica del campo vettoriale.

Detto ciò, come possiamo sfruttare queste coordinate? Beh, vediamo facilmente che le prime $(n-1)$ equazioni sono integrabili e restituiscono $y_i=c_i$ con $i=1,…,n-1$. Da ciò segue che non resta che risolvere l’ultima equazione differenziale:

$$ \frac{dy_n}{dt}(t) = g(c_1,…,c_{n-1},y_n) = \tilde{g}_{\boldsymbol{c}}(y_n(t)), $$

che ci permette di ricavare $y_n(t)$, a meno di risolvere integrali.

Conclusione

La teoria dell’integrabilità è un campo molto interessante sia nel caso di campi vettoriali su spazi vettoriali (o varietà) di dimensione finita che infinita (nel caso della teoria quantistica per esempio). I risultati però si fanno parecchio complicati e quindi ho preferito concentrarmi solo su uno tra i risultati più intuitivi, ovvero il teorema di Lie.

Un altro famoso e classico risultato invece riguarda i sistemi Hamiltoniani, esso è il teorema di Liouville-Arnol’d e, nel caso le sue assunzioni siano soddisfatte da un sistema Hamiltoniano, esso ci porta a definire completamente integrabile tale sistema.

Magari su questo risultato possiamo soffermarci in un articolo più avanti, dopo averne dedicato uno all’introduzione dei campi vettoriali Hamiltoniani, così da definire un po’ di contesto.

Per questo articolo direi che possiamo concludere, se hai qualche domanda o suggerimento lascia pure un commento qui sotto, appena posso ti risponderò 🙂

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.

Vai ad inizio articolo