principio del terzo escluso

principio del terzo escluso – Cos’e’ e qualche esempio

Ciao. Eccoci con un nuovo articolo. Oggi andremo a continuare la lista di terminologie matematiche spiegate brevemente. In questa sequenza di articoli/video ho previsto contenuti un po’ enciclopedici, in cui cerco di prendere quei termini/concetti che all’università vengono dati per scontati (e magari ti fai anche dei problemi a porre delle domande a riguardo perché pensi siano stupide).

Prima di proseguire, se preferisci guardare video alla lettura, qui trovi il video:

Oggi andremo a vedere che cosa si intende per principio del terzo escluso.Questo è un risultato molto semplice da capire. E’ un principio che è abbracciato in maniera molto aperta da gran parte dei rami della matematica. Vedremo poi però che ci sono anche dei matematici che non lo approvano, che non prendono in considerazione questo principio e sono chiamati matematici costruttivisti.

Il principio del terzo escluso si basa su un’idea molto semplice, o meglio evidenzia un’idea molto semplice: una proposizione matematica può essere o vera o falsa, non può esserci una terza possibilità.

Per esempio, quando sei davanti ad un numero naturale e affermi che è pari, ci sono solo 2 possibilità: hai ragione o hai torto. Infatti un numero naturale o è pari o non lo è, e in tal caso lo chiamiamo dispari. Però non può esserci una terza possibilità, ed ecco perché parliamo di “escludere il terzo”.

Questo è anche il principio che regola fondamentalmente la dimostrazione per assurdo. Infatti l’idea alla base di questa tecnica dimostrativa è di partire da un’assunzione (che solitamente è l’opposto di quello che vogliamo dimostrare) e poi, tramite dei ragionamenti logici e coerenti, arrivare ad una contraddizione.

Da ciò, possiamo dedurre che siccome partendo dall’assunzione di partenza, siamo arrivati ad una contraddizione, allora questa è errata. A questo punto entra a gamba tesa il principio del terzo escluso. Infatti, siccome non c’è alcuna possibilità oltre al fatto che un’assunzione sia errata o corretta, questa contraddizione vuol dire che abbiamo mostrato la validità della tesi.

Occhio però! Abbiamo mostrato la tesi non in modo costruttivo, ma l’abbiamo fatto escludendo l’altro caso possibile. Ecco dove arrivano i matematici costruttivisti, che si rifiutano di accettare risultati mostrati in questo modo e, più in generale, decidono di rinunciare completamente al principio del terzo escluso.

I matematici costruttivisti, vogliono mostrare tutti i risultati in modo costruttivo, ovvero concretamente partire dalle ipotesi e, logicamente, arrivare alla tesi.Detto ciò, magari non hai mai sentito parlare di questo principio, ma probabilmente avrai già utilizzato, magari senza accorgertene, tutti questi concetti di cui abbiamo parlato. Perché? Perché semplicemente è un principio molto ragionevole.

Noi infatti siamo abituati a dare per scontato che un concetto matematico sia o vero o falso. Chiaramente, nel mondo reale, nei problemi della vita concreta, ci sono delle verità opinabili, ci sono delle situazioni dove non c’è solo l’attributo di verità o falsità, e ci sono cose discutibili.

Però in questi casi si parla di “problemi” del linguaggio comune o di situazioni legate alle opinioni, ovvero tutte cose che in matematica non sono ben viste e presenti.

Con ciò spero di aver chiarito il principio del terzo escluso. Ti ricordo poi che se hai altri termini/concetti che ti interesserebbe che trattassi, puoi lasciare tranquillamente un commento qui sotto e proverò a trattarlo in altri video/articoli.

Con ciò ti saluto, e ci leggiamo al prossimo articolo 😉

Davide

Cosa ne pensi dell'articolo?

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.