numeri irrazionali

La scoperta dei numeri irrazionali

Un numero irrazionale (del latino “ratio” ovvero rapporto) è un numero che non può essere espresso come rapporto tra due numeri interi. Non sottovalutate la loro importanza, poiché sono fondamentali per la matematica. Ogni volta che fate calcoli con funzioni logaritmiche, esponenziali, trigonometriche e perfino polinomiali è molto probabile che spuntino fuori. Senza di loro nessuna di queste operazioni sarebbe possibile. Inoltre, a sottovalutare la loro importanza manchereste di rispetto al povero Ippaso di Metaponto, che diede letteralmente la vita per loro. Scopritore dei numeri irrazionali, fu condannato a morte proprio a causa loro.

Un po’ di storia

Per capire bene perché la loro scoperta causò grandi problemi, bisogna per forza fare un po’ di Storia e di Filosofia. Torniamo indietro, circa tra il VI e il V secolo a.C. a Crotone, nella Magna Grecia (ai giorni nostri, Italia). Lì visse Pitagora: illustre filosofo, matematico, astronomo, scienziato, uomo politico e capo religioso. Per farvi capire quanto quest’uomo fosse avanti anni luce, considerate che fu il primo a capire quanto bene la matematica descrivesse la realtà. Da questo concetto è nata la fisica.

Come può essere che la matematica, un prodotto del pensiero umano indipendente dall’esperienza, sia così mirabilmente adattata agli oggetti della realtà?

Albert Einstein

Se anche Einstein si domandava una cosa del genere, non dev’essere stato così banale esserci arrivati per primi, no? Questa è una delle domande che più mi hanno personalmente affascinato, e se vi interessa saperne di più vi consiglio assolutamente di leggere “L’Universo matematico: La ricerca della natura ultima della realtà” di Max Tegmark.

Ma torniamo al nostro Pitagora. Fu il fondatore a Crotone di una scuola, la Scuola Pitagorica. Essa si presentava come setta mistico-religiosa, comunità scientifica e partito politico.

copia di un busto del I sec a.C. raffigurante Pitagora

La loro dottrina, come recita prontamente il mio vecchio libro di filosofia delle superiori, si fondava principalmente su questo concetto:

Alla base del principio pitagorico vi è un ordine misurabile. Affermare che le cose sono costituite di numeri e che quindi tutto il mondo è fatto di numeri significa che la vera natura del mondo, come delle singole cose, consiste in un ordinamento geometrico esprimibile in numeri (misurabile). Infatti, mediante il numero è possibile spiegare le cose più disparate dell’esperienza: dal moto degli astri al succedersi delle stagioni, dalle armonie musicali al ciclo della vegetazione. Per cui, anche ciò che sembra lontano dal numero risulta, a ben guardare, riconducibile a una struttura quantitativa e quindi misurabile. Questa è la grande importanza dei Pitagorici, che per primi hanno ricondotto la natura, o meglio il carattere che fa della natura qualcosa di oggettivo (di veramente reale), all’ordine misurabile; e hanno riconosciuto in quest’ordine ciò che da al mondo la sua unità, la sua armonia, quindi anche la sua bellezza.

Da questo potete intravedere i danni che facevano i numeri irrazionali: non sono più esprimibili come numeri interi, né tanto meno come rapporti. Di conseguenza, non sono più misurabili. Vanno a minare dalle fondamenta la dottrina Pitagorica, facendola crollare interamente. Se volete vedere la faccenda in modo un po’ analogo ma forse più chiaro, sostituite Galileo a Ippaso e l’eliocentrismo ai numeri irrazionali. Le affermazioni di Galileo erano problematiche per la Chiesa, e per questo fu costretto ad abiurare. Le dimostrazioni logiche sono pericolose per le dottrine dogmatiche.

Il primo numero irrazionale

I pitagorici avevano fatto moltissime scoperte, la più conosciuta di tutte è sicuramente il teorema di Pitagora. Grazie a questo, i triangoli rettangoIi non avevano più segreti ormai. Con pochi calcoli, si potevano sapere le misure precise di cateti e ipotenusa. Inoltre potevano calcolare le terne pitagoriche, ovvero terne di 3 numeri interi che possono essere usate per creare triangoli rettangoli. Queste erano molto utili e avevano applicazioni pratiche, e alcune erano conosciute già da molto.

Già gli antichi Babilonesi conoscevano le terne pitagoriche, ed esse venivano utilizzate per creare angoli retti in modo molto preciso. Se per esempio prendete una corda e la dividete in 12 parti uguali, e ci costruite un triangolo i cui lati misurano 3,4 e 5, ottenete un angolo retto. Per noi adesso è abbastanza scontato, ma allora avere un goniometro che ti segnava i 90° con precisione era molto comodo, soprattutto nell’ambito delle costruzioni.

Utilizzando il teorema di Pitagora, però, venivano fuori dei problemi. Le radici di quadrati perfetti erano molto semplici da calcolare, ma le altre? Una questione aperta, per esempio, era lo studio della diagonale del quadrato. Ci si raccapezzavano in molti, tra i pitagorici. Se considerate un quadrato di lato 1, ottene facilmente che la diagonale è $\sqrt{2}$. Per noi è un problema facile, per i pitagorici no.

Cercavano costantemente di capire in che rapporto fossero lato e diagonale, senza ottenere risposta. Il problema stava proprio nel loro sistema numerico: usando solo numeri interi e frazioni, non si può trovare risposta. Proprio mentre stava lavorando su questo problema, Ippaso di Metaponto fece una scoperta incredibile: se si prova a calcolare il rapporto tra la diagonale e il lato di un quadrato, si ottiene un paradosso! Non importa quanti sforzi matematici si facessero, le due grandezze erano incommensurabili. Detto in termini semplici, se sono incommensurabili, il rapporto tra i due è un numero irrazionale. Ippaso aveva appena scoperto dei nuovi numeri, “incommensurabili”.

Questa scoperta era assolutamente pericolosa. Inoltre, nessuno dei Pitagorici riusciva a contrastare questa dimostrazione. La matematica e la logica sono scienze esatte, c’è poco da fare. Capirete anche voi che l’esistenza di grandezze incommensurabili, per una dottrina spiegava tutto l’universo partendo dall’ordine commensurabile matematico di tutta la realtà, era proprio un bel problema. Ippaso divulgò questa scoperta, e venne condannato dai propri compagni a morire affogato. Purtroppo, la dimostrazione che fece Ippaso è andata perduta, e sappiamo solamente che era geometrica e non algebrica, ma nulla di più.

il problema di Ippaso

Vi riporto la dimostrazione che si studia adesso ai corsi di analisi. Questa è svolta per assurdo, cioè parto dal presupposto che qualcosa sia possibile e se poi procedo per semplici deduzioni logiche mi imbatto in un paradosso. Dunque l’ipotesi iniziale era sbagliata. Per farvi un esempio analogo, è come quando in una partita di scacchi sacrificate un pezzo per mangiarne un altro all’avversario. L’unica differenza è che un matematico non sta offrendo un solo pezzo, ma tutta la partita. Se volete approfondire meglio questa tipologia di dimostrazioni, vi consiglio questo articolo incentrato su questo tema: https://www.mathone.it/dimostrazione-per-assurdo/

Quindi, facciamo la nostra ipotesi per assurdo: esiste una frazione tale che $\frac{a}{b} = \sqrt{2}$ con $a$ e $b$ ridotti ai minimi termini. Attenzione al fatto dei minimi termini che è importante: $a$ e $b$ non possono essere entrambi pari, per definizione. Bene, adesso vediamo se vengono fuori dei paradossi. Eleviamo tutto al quadrato e otteniamo $a^{2}=2b^{2}$. Notiamo subito che $a^{2}$ è pari, poiché è 2 volte un qualcosa. Adesso ricordiamoci della cosa dei minimi termini: $b^{2}$ deve per forza essere dispari.

Però notiamo una cosa: il quadrato di un numero pari è pari ($(2k)^{2}=2(2k^{2})$), il quadrato di un numero dispari è dispari ($(2k+1)^{2}=2(2k^{2}+2k)+1$), quindi dato che $a^{2}$ era pari, anche $a$ è pari, e lo possiamo scrivere come $a=2k$. Di conseguenza, $a^{2} = 4k^{2}$. Se sostituiamo nell’equazione iniziale, otteniamo che $4k^{2}=2b^{2}$. Qua iniziamo a intuire il problema, se dividiamo per 2 otteniamo che $b^{2}=2k^{2}$ quindi anche $b$ è per forza pari. Aspetta, avevamo detto che $b$ doveva essere per forza dispari, come può adesso essere per forza pari? Può essere sia pari che dispari contemporaneamente? No, e abbiamo trovato il paradosso. Quindi l’ipotesi iniziale “Esiste una frazione $\frac{a}{b} = \sqrt{2}$” era errata.

Una dimostrazione priva di matematica: è irrazionale?

Ora che forse ho reso un po’ più chiaro il concetto di “dimostrazione per assurdo” utilizzando un po’ di matematica molto familiare, facciamo un passo avanti. Anche se la dimostrazione esatta è andata perduta, possiamo farci un’idea di come potesse essere quella di Ippaso. I pitagorici, infatti, usavano molto di più la geometria, piuttosto che l’algebra. Ma cosa significa esattamente? Come si potrebbe dimostrare geometricamente che un numero è irrazionale? Ma è molto semplice, sempre per assurdo!

Ripartiamo dal nostro caso del lato e della diagonale di un quadrato. Per il teorema di Pitagora sappiamo che il quadrato costruito sulla diagonale è uguale alla somma dei due quadrati costruiti sul lato. Chiamiamo il quadrato più grande $v$ (che sta per verde) e i due più piccoli $r$ (rosa). Sappiamo che $v=r+r$. Quindi $v=2r$. N.B. sappiamo che $\frac{v}{r}=2$ quindi se facciamo il rapporto dei lati di questi quadrati, avremo che $\frac{lv}{lr}=\sqrt{2}$. Bene, ora ci manca una ipotesi per assurdo, e il gioco è fatto.

Questa è la parte importante: sappiamo che il rapporto dei lati ci darà $\sqrt{2}$. Questo rapporto, essendo una frazione, sarà riducibile fino a un certo punto. Se $\sqrt{2}=\frac{a}{b}$, $a$ e $b$ saranno le misure più piccole possibili dei lati di questi quadrati. Una frazione non può essere infinitamente riducibile, quindi devono esistere due quadrati, uno di lato $a$ e uno di lato $b$ tali che l’area di uno è uguale a due volte l’area dell’altro.

Quindi la nostra ipotesi per assurdo è che esistono dei quadrati, tali per cui 2 volte l’area di uno sia uguale all’area dell’altro e sappiamo che la soluzione deve essere la più piccola di tutte. Immaginiamo quindi di avere due quadrati $r$ e $v$ tali che $2r=v$ e sono i due quadrati più piccoli possibili. Ora proviamo a sovrapporli, come nella figura qui sotto.

Per ipotesi, sappiamo che l’area dei 2 rosa è uguale a quello verde. Questo significa che l’area del quadrato rosso interno, è uguale all’area dei 2 quadrati verdi. E qui c’è un grosso problema, perché abbiamo appena detto che doveva per forza essere la soluzione più piccola possibile, ma ne abbiamo appena trovata una ancora più piccola. Paradosso! Inoltre, il procedimento può essere ripetuto infinite volte, ottenendo quadrati sempre più piccoli. Pensate al significato matematico: se posso trovare quadrati infinitamente piccoli, anche i loro lati saranno infinitamente piccoli. Ma se, come abbiamo detto prima, il rapporto dei lati era $\frac{a}{b}=\sqrt{2}$, significa che posso prendere $a$ e $b$ sempre più piccoli. Ma una frazione non può essere infinitamente riducibile, quindi abbiamo il nostro paradosso, et voilà.

Altri numeri irrazionali

Bene, abbiamo scoperto che $\sqrt{2}$ è un numero irrazionale. Pensate abbia intenzione di fermarmi qui? Forse non mi conoscete abbastanza. I pitagorici scoprirono anche che $\sqrt{5}$ è irrazionale, ma si fermarono qui. Il problema è che facevano matematica mediante la geometria, e questo rende complesso generalizzare. A partire dalla scoperta di Ippaso, successive scoperte matematiche hanno fornito nuovi mezzi per lo studio dei numeri irrazionali, ma la cosa più sorprendente è che il metodo utilizzato è sempre quello usato dai greci: la dimostrazione per assurdo. Le successive scoperte in questo campo si devono a Euclide, poi tutti matematici di epoca molto più recente. Ma così come Ippaso nel 500 a.C. faceva i suoi procedimenti, anche adesso, a distanza di 2500 anni, usiamo lo stesso procedimento. Vediamone alcune.

Tutte le radici quadrate

Ogni $\sqrt{n}$ è irrazionale, se $n$ non è un quadrato perfetto. Il metodo è molto simile a quello appena visto, ma ci viene in aiuto il teorema fondamentale dell’aritmetica.

Ogni numero naturale maggiore di 1 o è un numero primo o si può esprimere come prodotto di numeri primi. Tale rappresentazione è unica, se si prescinde dall’ordine in cui compaiono i fattori.

In particolare, ci interessa un aspetto di questo teorema. Se $a$ è rappresentabile in un singolo modo come prodotto di primi, sappiamo per certo che $a^{2}$ avrà esattamente la stessa rappresentazione, solo che con ogni primo elevato al quadrato. Dimostriamo facilmente quindi che se $a^{2}$ è divisibile per $k$ (N.B. $k$ non deve essere un quadrato perfetto), sicuramente anche $a$ lo sarà. Notiamo un’altra cosa, se $k$ divide $a$, allora $a^{2}$ sarà addirittura divisibile per $k^{2}$. Abbiamo tutto quello che ci serve.

Ipotesi per assurdo: $\sqrt{k}=\frac{a}{b}$, ridotta ai minimi termini ($k$ non è un quadrato perfetto). Eleviamo al quadrato e otteniamo che $a^{2}=kb^{2}$. A questo punto sappiamo che $a^{2}$ è multiplo di $k$ e di conseguenza divisibile per $k^{2}$. Quindi, $a^{2}=k^{2}n$. Ora se sostituiamo nell’equazione di prima otteniamo che $k^{2}n=kb$. Adesso non basta altro che dividere per $k$ e otteniamo che $kn=b$ quindi anche $b$ è divisibile per $k$. Questo è il nostro paradosso: $a$ e $b$ erano ridotti ai minimi termini, ma adesso sono entrambi divisibili per $k$. Logicamente è un assurdo, e $\sqrt{k}$ è dunque irrazionale. Attenzione: tutto il nostro ragionamento funzionava bene se e solo se $k$ non era un quadrato perfetto. Ma è perfettamente logico: in questo caso, la dimostrazione di irrazionalità casca, e la radice non è irrazionale, ma un numero intero.

Il numero $e$ è irrazionale?

Ora facciamo una piccola pausa. Il problema è che le dimostrazioni iniziano a diventare abbastanza difficili. Fino a qui, credo siano state tutte abbastanza comprensibili e soprattutto “visualizzabili”. Le altre che ho trovato iniziano ad essere lunghette e piene zeppe di matematica, difficili da seguire leggendo. Se l’argomento vi interessa, vi consiglio di andare a spulciare su youtube, perché vedere una dimostrazione è più efficace che leggerla. Vi lascio qui sotto un assaggio di un’ultima dimostrazione, e un link a un video youtube. La dimostrazione è sull’irrazionalità del numero e, scoperta nel 1737 da Eulero. Ve ne riporto una più semplice, opera di Cohn nel 2006. Se siete stufi di dimostrazioni, vi lascio un articolo molto interessante sul numero e, che merita sicuramente una letta: https://www.mathone.it/numero-di-nepero/

Torniamo a noi. Prima di addentrarci in quest’ultima irrazionalità vi serve solo sapere una formula per calcolare $e$. Poi possiamo iniziare.

Formula per il numero di Nepero

Ormai credo che avrete le idee ben chiare: come possiamo dimostrare che e è un numero irrazionale? Per assurdo, che domande. Allora ipotizziamo che $e = \frac{a}{b}$. Sostituiamo subito la formula vista prima e otteniamo che $\frac{a}{b}=1+ \frac{1}{1!} + \frac{1}{2!} + … + \frac{1}{n!}$. Adesso separiamo in due il termine di destra fin dove il denominatore è $b!$ e otteniamo:

$ \frac{a}{b}=(qualcosa) + \frac{1}{(b+1)!} + \frac{1}{(b+2)!} +…+ \frac{1}{(b+n)!}$

Adesso moltiplichiamo da entrambe le parti per $b!$ In particolare, vogliamo vedere se quello che otteniamo è un numero intero o no. Analizziamo la parte di sinistra, $ \frac{a}{b}$ e se moltiplichiamo per $b!$ otteniamo $\frac{a}{b}*b!$ ovvero $a(b-1)!$ che è un numero intero. Ora guardiamo la parte a destra, che avevamo scritto come: (qualcosa) $+ \frac{1}{(b+1)!} + \frac{1}{(b+2)!} +…+ \frac{1}{(b+n)!}$. Guardiamo solo il primo pezzo, che io ho comodamente chiamato “qualcosa”. Era tutta la prima parte della formula di Nepero, quindi:

$(qualcosa) = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + … + \frac{1}{b!}$ a questo punto, è facile notare che $b!$ è divisibile per ogni denominatore ($b!=1\cdot 2\cdot 3\cdot 4\cdot …\cdot b$) quindi ogni singolo addendo è un numero intero. Di conseguenza, anche il secondo pezzo è un numero intero. Adesso manca solo l’ultimo pezzo: $b!(\frac{1}{(b+1)!}+…+\frac{1}{(b+n)!})$. Questo è un po’ più complesso, ma potete vedere facilmente che è per forza minore di 1, visto che state sommando frazioni che diventano esponenzialmente più piccole. Io me la sono cavata con una sola frase, in modo molto poco rigoroso, ma solo per risparmiarvi un po’ di tempo.

Adesso mettiamo assieme i pezzi. Inizialmente avevamo:

$ \frac{a}{b}b! = (qualcosa) + b!(\frac{1}{(b+1)!}+…+\frac{1}{(b+n)!}) $ e sappiamo che il primo e il secondo sono numeri interi, mentre l’ultimo è sicuramente minore di 1, quindi:

un numero intero = un numero intero + un numero minore di 1

è forse possibile? Ovviamente no, è un paradosso. La nostra dimostrazione per assurdo è completa, il numero e è irrazionale.

Approfondimenti

Se siete arrivati fin qui, vi faccio i miei complimenti. Sappiate che in questo articolo abbiamo visto solo la punta dell’iceberg. Potrei tornare sull’argomento, parlarvi di altri numeri irrazionali o addirittura dei numeri trascendentali, ma forse in futuro. Intanto vi lascio un paio di video youtube se volete approfondire l’argomento, ma vi avviso che sono in inglese e usano matematica un po’ più complessa.

Fonti

Ci tengo a fare una piccola precisazione. Non sono uno storico, e sicuramente le mie fonti non saranno super precise. Inoltre, pure uno storico affermato non saprebbe precisamente dirvi cosa succedeva nella Magna Grecia, per motivi che credo immaginerete. Tra le diverse ipotesi e versioni, ho deciso di raccontarvi quella che personalmente trovavo più convincente. Potrebbero esserci imprecisioni e errori. http://lcalighieri.racine.ra.it/pescetti/ricerca_geometrie_non_euclidee_2004_05/somm_mate%20greci/mategreci5.htm

https://it.wikipedia.org/wiki/Ippaso_(filosofo)

https://it.wikipedia.org/wiki/Scuola_pitagorica

https://www.ilpost.it/mauriziocodogno/2010/11/24/ippaso-2-e-i-falsi-storici/

Fisica matematica: cos’è e molte risorse per approfondirla

Cos’è la fisica matematica? Se non hai mai studiato matematica probabilmente non ne hai mai sentito parlare e non ti è chiaro dove possa concludersi la fisica e iniziare la matematica, o viceversa. Quindi questo articolo vuole aiutarti ad avventurarti in questo mondo che ho scoperto un paio d’anni fa e mi sta piacendo sempre di più, non si sa mai che con questo articolo ti venga voglia di scaricarti una delle dispense che ti suggerisco o comprarti uno dei libri elencati per approfondirla da solo 🙂 Dopotutto con gli articoli sul blog non miriamo ad insegnare nulla, ma ad incuriosire e dare gli strumenti per successivi approfondimenti personali! Ma bando alle ciance…iniziamo!

Ah dimenticavo…se non lo sai ho anche un canale Youtube e la fisica matematica sarà senz’altro uno dei miei principali interessi nei video. Se non sei ancora iscritto lo trovi qui: CANALE YOUTUBE MATHONE.

Cos’è la fisica matematica?

Per iniziare questo paragrafo ti riporto la definizione di fisica matematica che puoi trovare anche su Wikipedia perchè mi sembra molto chiara ed un ottimo punto di partenza:

La fisica matematica è quella disciplina scientifica che si occupa delle “applicazioni della matematica ai problemi della fisica e dello sviluppo di metodi matematici adatti alla formulazione di teorie fisiche e alle relative applicazioni“.

Wikipedia

Vediamo un po’ di analizzare quanto scritto qui sopra. Partendo da cosa sia la fisica si può capire abbastanza semplicemente la definizione qui sopra. Infatti fisica vuol dire, anche in termini di origini della parola, “natura” o “le cose naturali”. È quindi la branca della scienza che si occupa letteralmente di studiare i fenomeni naturali, utilizzando un formalismo matematico e degli strumenti forniti dalla matematica.

Prima di proseguire, ci tengo a dirti che se vuoi vedere il video che ho fatto su questo argomento lo trovi qui:

Questi fenomeni naturali vengono quindi osservati, misurati e poi analizzati grazie a vari strumenti matematici. L’obiettivo ultimo della fisica è quello di costruire delle relazioni tra i fenomeni naturali (dei legami astratti) e quindi essere in grado di prevedere alcuni risultati a partire da delle misurazioni concretamente effettuabili.

Bene, se ci hai fatto caso, nelle righe qui sopra ho evidenziato in grassetto i termini “forniti dalla matematica”. È proprio qui che possiamo infatti far ricadere la linea di delimitazione tra fisica matematica e fisica. Chi si occupa di fisica matematica ha sostanzialmente l’obiettivo di fornire gli strumenti, i formalismi, i metodi che poi possono essere applicati dai fisici (in genere) per analizzare un particolare fenomeno naturale.

Da un punto di vista storico, possiamo trovare la motivazione che ha portato all’interesse per la fisica matematica già dalle parole di Galileo:

Il mondo naturale va descritto con il suo linguaggio, e questo linguaggio è la matematica.

Galileo Galilei

Quindi, in parole povere, possiamo dire che la differenza tra la fisica matematica e la fisica teorica sta nella particolare attenzione che la prima pone verso il formalismo tipico della matematica per descrivere fenomeni fisici, mentre la seconda ha il chiaro obiettivo, prima o dopo, di andare a relazionarsi con la fisica sperimentale e quindi, il reale mondo osservabile.

Differenti scale studiate dalla fisica matematica

Questa sezione è parecchio importante perchè permette un po’ di classificare i vari settori della fisica matematica in base al loro oggetto di studio. Più precisamente questa classificazione sarà basata sulla “grandezza” della scala analizzata da questi rami di studio.

Vediamo un esempio che ci permette di analizzare questo molto chiaramente:

Supponi di voler descrivere come si muove un gruppo di 2 palline che, partendo da punti diversi di un tavolo da biliardo, vengono lanciate verso il centro del tavolo così da interagire l’una con l’altra.

Bene, in questo caso la dinamica si può studiare a livello microscopico, ovvero analizzando con un’equazione differenziale ordinaria la dinamica di ogni pallina, andando quindi ad ottenere un sistema di 2 equazioni, basate fondamentalmente sulla legge di Newton, chiaramente non semplici ma sempre 2 equazioni ordinarie sono. Infatti in questo caso il numero degli oggetti coinvolti è basso, per cui non è eccessivamente costoso descrivere singolarmente le dinamiche delle singole particelle.

Ecco quindi vista la parte della fisica matematica che si occupa delle scale MICROSCOPICHE. Qui ricade la meccanica razionale, che coinvolge in maniera pesante l’analisi dei sistemi dinamici ed è la parte della fisica matematica a cui mi sto appassionando maggiormente.

Andiamo ad aumentare il numero degli oggetti coinvolti.

Supponiamo di avere 150 persone, chiuse all’interno di una stanza, che al momento di un incendio devono evacquare la stanza. Capisci bene che in questo caso descrivere la dinamica di ogni singola persona sarebbe troppo costoso, infatti si dovrebbero tenere in considerazione troppi dettagli, troppe interazioni, troppe equazioni. Avremo come minimo 150 equazioni ordinarie se seguissimo un approccio microscopico, tutte vincolate a certi fattori quali “la consapevolezza che l’individuo ha di dove sia l’uscita di sicurezza” o “quanto spaventato è il soggetto” e cose del genere, non semplice nemmeno da risolvere in termini di costi computazionali una volta “messo giù” il sistema.

Ecco quindi che qui si può decidere di coinvolgere un approccio che lavora ad una scala superiore, l’approccio CINETICO o meglio l’approccio che si dedica all’analisi dei fenomeni su scala MACROSCOPICA.

In quel caso, non ci si interessa del variare della posizione allo scorrere del tempo del singolo individuo, ma si analizza la densità di probabilità associata all’evento che gli individui si trovino in una certa zona ad un certo istante temporale.

Quindi si iniziano a trattare tutte insieme le persone come una sola cosa, avremo quindi delle equazioni cinetiche che coinvolgono le variabili di velocità, posizione e densità di probabilità. Meno equazioni ma più “legate” l’una all’altra.

Se ti interessa questa classe di problemi ti consiglio di andarti a leggere qualcosa sul problema di evacquazione, sulla dinamica degli stormi di uccelli o anche sull’equazione di Vlasov Poisson di cui sto ascoltando alcune lezioni qui a Nizza, la trovi qui: https://en.wikipedia.org/wiki/Vlasov_equation .

Passiamo quindi all’ultima, ma non meno importante, scala di analisi dei problemi della fisica matematica. La scala MESOSCOPICA. In questo caso si passa dalle equazioni cinetiche alle equazioni alle derivate parziali (PDE). Lo studio di questa classe di fenomeni è basata sul vedere gli oggetti coinvolti nella dinamica come un fluido continuo.

Ti faccio un esempio. Supponi di avere un’autostrada ad una sola corsia in cui la frequenza di macchine che passano da una certa posizione è così alta da poter approssimare la sequenza di macchine come un fiumiciattolo e descrivere lo scorrere delle macchine come la variazione di densità, in spazio e tempo, del fluido. Per esempio in questo caso si parla di equazione di Burgers $\partial_t u +\partial_x(u^2/2)=0$ ma le equazioni alle derivate parziali che si possono generare sono veramente infinite.

Per esempio si può far ricadere in questa macro area della fisica matematica lo studio matematico della dinamica dei fluidi, della turbolenza, delle onde sonore e molto altro ancora.

Risorse e libri di testo consigliati per iniziare a studiarla

Eccoci finalmente alla sezione che ritengo più utile dell’articolo 🙂 Fortunatamente infatti si possono trovare molti libri e dispense ben fatte riguardo a questi temi. Chiaramente la fisica matematica è un settore ampissimo perché si interessa dei più svariati fenomeni e delle più svariate scale.

Di alcuni di questi settori so poco o nulla, per cui mi limito ad elencarti qui sotto risorse per approfondire temi che ho avuto modo di studiare personalmente in maniera più o meno avanzata. Quindi settori come la teoria spettrale per la meccanica quantistica o altri non te li riporto perché ho avuto modo di studiarli in parte ma poco rivolti alla fisica, più come uno strumento generale della matematica poi eventualmente utilizzabile per la fisica, quindi preferisco evitare.

Delle scale di cui ti ho parlato qui sopra andremo a vedere qualche risorsa riguardante i fenomeni della dinamica (rivedendo quindi in maniera più formale e rigorosa, alla luce della geometria differenziale, la meccanica classica), qualche riferimento a testi riguardanti le PDE iperboliche e i modelli matematici per le PDE della fisica in generale. Ovviamente è molto restrittivo come panorama, ma preferisco evitare di suggerirti cose che non ho studiato personalmente almeno in parte.

Sistemi dinamici e meccanica razionale

Questo è il settore che preferisco tra quelli che ti ho nominato, è molto ampio, molto visivo nelle tecniche utilizzate e spesso tratta più o meno direttamente di fenomeni che puoi vedere tranquillamente nella vita quotidiana. Di suggerimenti da darti ne avrei quindi molti ma mi limito a fornirti qualcosa di ben mirato. Partiamo dai sistemi dinamici per i quali ti lascio una playlist di video (in inglese ma fatti da un italiano 😉 ) su Youtube che è davvero chiara:

Questo è solo il primo video del corso, se clicchi sul titolo poi ti si apriranno anche le successive lezioni

Se preferisci studiare su dei libri o delle dispense eccoti accontentato/a:

  1. Introduzione all’Analisi Qualitativa dei Sistemi Dinamici Discreti e Continui (qui si punta molto sulle tecniche qualitative del ritratto di fase, che permettono di ottenere molte informazioni sul sistema in analisi senza risolvere l’equazione che lo descrive, come spesso necessario…uno dei due autori è stato mio professore di Dinamica dei Fluidi 😉 ).
  2. Una passeggiata tra i sistemi dinamici (Dispensa di Giancarlo Benettin per l’università di Padova, ho avuto modo di usarla parecchio in questi 2-3 anni)

Purtroppo non posso lasciarti la dispensa da cui ho studiato al mio corso di sistemi dinamici perché è protetta da password e preferisco evitare casini 🙂

L’analisi qualitativa, che puoi apprendere qui sopra in maniera più o meno approfondita, diventa poi fondamentale se vuoi spostarti sull’approccio newtoniano, lagrangiano o hamiltoniano verso la dinamica classica. Per studiare questi approcci ecco le risorse che mi sento di suggerirti:

  1. Dispense per il corso di Istituzioni di Fisica Matematica – prof. F. Fassò : queste ho avuto modo di consultarle parecchio quest’anno per preparare l’esame di Meccanica Analitica
  2. Questa dispensa invece non l’ho mai consultata ma mi sembra ben fatta e tratta del formalismo Hamiltoniano: Dispensa UniMi
  3. Per studiare questi temi spesso è necessario utilizzare concetti e strumenti della geometria differenziale, di libri a riguardo ce ne sono tanti ma ultimamente mi sto trovando a guardare spesso questo libro in cui si utilizzano molti esempi e rappresentazioni grafiche per cui te lo consiglio: A Visual Introduction to Differential Forms and Calculus on Manifolds.

Equazioni alle derivate parziali della fisica matematica

Come abbiamo visto nei paragrafi precedenti, non sempre per parlare di fisica matematica è sufficiente coinvolgere equazioni differenziali ordinarie, come per la meccanica razionale, spesso per analizzare la dinamica dei continui, vibrazioni, fluidi e molto altro sono necessarie equazioni alle derivate parziali. Questo è un mondo ampissimo, quindi è dura dare suggerimenti anche perché ho avuto modo di studiarle sotto vari aspetti ma chiaramente non so nulla in confronto a tutto ciò che è stato scoperto fino ad ora.

Ti do però qualche suggerimento riguardo a testi scorrevoli e che potrebbe interessarti studiare o sfogliare. Parto da un suggerimento che mi aveva dato il buon Erik ormai un anno fa, è un libro molto piacevole da leggere e consultare, in cui si parla dei modelli matematici della fisica, si analizzano le varie procedure per ricavarli e si studiano poi le equazioni ottenute da un punto di vista delle loro proprietà ed eventuali tecniche risolutive. In questo libro si spazia in tutte le principali classi di PDEs (Partial Differential Equations), guardando equazioni ellittiche, paraboliche, iperboliche e tutto ciò che ci sta intorno.

E’ in italiano ed il titolo è Equazioni a derivate parziali: Metodi, modelli e applicazioni.

Passiamo poi al classicone di questo campo di studi, non è di sicuro un testo leggero e semplice dato che generalizza, quando possibile, ad $\mathbb{R}^d$ mentre per farsi un’idea di ciò che si sta parlando spesso è utile ragionare direttamente in $\mathbb{R}^2$ per poter rappresentare quanto letto, ma comunque sto parlando dell’Evans, il libro è: Partial Differential Equations.

Tanto per dire 😉

Come per le equazioni differenziali ordinarie è raro poter risolvere analiticamente una PDE, per cui ti lascio anche un testo, in italiano, con cui mi sono trovato bene e si parla di risoluzione numerica di PDE: Modellistica Numerica per Problemi Differenziali.

Dopo chiaramente di testi da suggerire ce ne sarebbero molti altri, magari più specifici per un particolare settore o più rivolti alla modellizzazione matematica. Per questa tipologia di argomenti onestamente non mi sono mai trovato particolarmente bene con le dispense ma ho sempre preferito i libri, se proprio dovessi trovarne una, che però riguarda “solo” le equazioni e i sistemi di equazioni iperboliche, da cui ho studiato per preparare un esame in Erasmus è: Hyperbolic Conservation Laws An Illustrated Tutorial .

Sono consapevole che i libri e le dispense suggerite in queste ultime righe sono costosi e difficili, però per vedere questa tipologia di argomenti lo sforzo richiesto è parecchio alto. In realtà anche per la meccanica razionale e i sistemi dinamici lo sforzo è molto alto però per iniziare a studiarle, avendo usato delle dispense universitarie, sono riuscito a suggerirti qualche risorsa più passo a passo/introduttiva. Qui invece non ho mai trovato nulla onestamente.

Bene, spero che questo articolo introduttivo alla fisica matematica ti sia piaciuto. Ti anticipo che la lista delle risorse per approfondire questi temi la amplierò mano a mano che studierò cose nuove (e ne studierò parecchie anche solo per la tesi), inoltre questo è solo l’inizio. Infatti più avanti farò molti articoli e video dedicati a questi temi, magari più specializzati su un esempio, su un’equazione o un modello. Se ti piace come tema dimmelo con un commento qui sotto e se hai suggerimenti di ogni genere fammi sapere 🙂

Il sogno di Leibniz: la caratteristica universale

Gottfried Wilhelm von Leibniz (1646-1716) è stato un matematico, ingegnere, filosofo, teologo, linguista, diplomatico, giurista, storico… Il suo genio universale ha lasciato tracce del suo passaggio in ogni campo del sapere di cui si è interessato.

Per parlare della sua opera anche solo in uno di questi campi servirebbe ben più di un articolo. 

A noi appassionati di matematica il nome di Leibniz riporta alla mente subito derivate e integrali, famosa è la disputa tra lui e Newton sulla paternità del calcolo infinitesimale. Ci sarebbe tantissimo da dire anche su questo, ma non è l’argomento di oggi. 

In questo articolo parleremo di un’idea, un’idea che grazie al suo sviluppo ci ha regalato la logica, il calcolo automatico e l’informatica moderna.

Prima ti proseguire ti ricordo che sul blog ci sono già altri articoli dedicati ai grandi matematici, eccone alcuni:

Gauss: il principe dei matematici.

Poincaré: l’ultimo universalista.

Leibniz e l’importanza di una buona notazione

Chi ha già avuto a che fare col calcolo differenziale ricorderà sicuramente le diverse notazioni che si possono usare per indicare la differenziazione. Una tra queste è stata inventata proprio da Leibniz, fu lui a introdurre i simboli ∫ per l’integrazione e d per la derivazione. 

Questa notazione è estremamente intuitiva: la regola di Leibniz per il prodotto si dimostra banalmente usando la sua notazione ($d(fg) = (f+df) (g+dg) – fg = f(dg) + g(df) + (df)(dg) = f(dg) + g(df) $, poiché $(df)(dg)$ è infinitesimo di ordine inferiore), la stessa cosa accade per la tecnica di integrazione nota come metodo di sostituzione, usando la notazione di Leibniz è praticamente automatica. 

Emblematico della comodità della notazione di Leibniz è il fatto che ancora oggi venga usata (fuori dalle facoltà di matematica 😉 ) in modo spesso improprio, per giustificare passaggi che altrimenti richiederebbero derivazioni formali più impegnative. Leibniz fece uso sistematico degli infinitesimi, numeri positivi più piccoli di qualsiasi numero reale positivo. Fin dalla loro introduzione venne contestata la legittimità di tali grandezze, ed in effetti all’inizio del XX secolo tutti i matematici riconoscevano che l’uso degli infinitesimi non aveva giustificazione. Nel 1966 Abraham Robinson introdusse l’Analisi Non-standard, riabilitando l’utilizzo degli infinitesimi, definendoli in modo rigoroso sfruttando i rivoluzionari risultati della logica del ‘900.

Questa semplicità di utilizzo non è un caso! Leibniz passò anni a perfezionare la sua notazione. Era convinto dell’importanza di scegliere simboli adatti e trovare regole che ne governassero la manipolazione

In un certo senso è proprio questa l’idea di Leibniz: la sua notazione per il calcolo differenziale in qualche modo si prende carico di gran parte del lavoro, perché possiede già nelle sue regole di manipolazione il significato di ciò che rappresenta. 

Leibniz sognava qualcosa di analogo per l’intera conoscenza umana: un linguaggio artificiale universale, con regole grammaticali che mettessero in luce tutte relazioni logiche esistenti tra le proposizioni. 

Una volta costruito questo linguaggio, sarebbe stato possibile lasciare a delle macchine il compito di dedurre tutte le verità semplicemente sbrigando i calcoli, lasciando libera di dedicarsi al pensiero creativo la mente umana.

«È assurdo impiegare gli uomini di intelligenza eccellente per fare calcoli che potrebbero essere affidati a chiunque se si usassero delle macchine.»

G.W. Leibniz

L’Ars Magna di Llull

Quest’idea in realtà nacque in Leibniz molto prima degli anni in cui sviluppò il calcolo differenziale. Probabilmente risale alla sua gioventù, durante i suoi studi di diritto. Affascinato dalla logica aristotelica, per una mente logica come la sua era assurdo pensare che delle questioni giuridiche, per quanto intricate, non potessero avere una risoluzione univoca. Nell’idea di Leibniz, una volta sviluppato il suo linguaggio, “quando sorga una controversia, non ci sarà più necessità di discussione tra due filosofi di quella che c’è tra due calcolatori. Sarà sufficiente prendere una penna, sedersi al tavolo e dirsi l’un l’altro: calcoliamo!”

Secondo Leibniz, il primo passo verso un alfabeto del pensiero umano doveva essere l’enumerare tutte le possibili combinazioni dei concetti di base di cui il pensiero umano si compone. Questa convinzione lo portò a studiare, da autodidatta perchè stava ancora conseguendo il dottorato in legge, il calcolo combinatorio.

 Nei suoi studi si imbattè nell’opera di Ramon Llull (1232-1315): l’Ars Magna. Llull fu un filosofo, teologo e missionario maiorchino. Nella sua attività di missionario Llull cercò di convertire al cristianesimo gli ebrei e gli arabi. Per questa ragione studiò a fondo la loro cultura e la struttura delle loro lingue, e ne fu influenzato in modo evidente nella creazione della sua filosofia. Per esempio il sistema di numerazione ebraico usa come cifre gli stessi caratteri usati per le parole. In questo modo ogni parola può essere letta anche come un numero, ed è su questa ambivalenza che è nata la Gematria (l’esegesi biblica basata sul valore numerico delle parole). La cultura ebraica è intrisa di collegamenti con i numeri. Basti pensare alla Cabala o allo stesso Talmud, uno dei libri sacri dell’ebraismo, dove un passaggio afferma che combinando lettere dotate di valore numerico, è possibile costruire la struttura del mondo.

L’Ars Magna (1308) ha come obiettivo quello di conoscere Dio, e per farlo sviluppa la prima forma di logica combinatoria. Llull mette in relazione l’alfabeto agli attributi di Dio. Associa alla lettera A Dio stesso, la B alla bontà, la C alla grandezza e così via. Ora per conoscere tutti i possibili attributi di Dio basta combinare a due a due tutte le lettere. Questo procedimento può essere del tutto meccanico, non c’è bisogno di una mente umana per elencare tutte le combinazioni di lettere.


Nella figura è rappresentato un cerchio suddiviso in 9 settori. Sotto ogni lettera compaiono un aggettivo e un sostantivo. Ogni settore è unito agli altri otto per rappresentare tutte le possibili combinazioni che si possono ottenere ruotando il cerchio.

Leibniz rimase molto colpito da quest’opera anche se ne fu molto critico, per lui quella esposta da Llull era “solo l’ombra della vera arte combinatoria”. 

Nel 1666, come seconda tesi di dottorato in filosofia e legge, presentò la Dissertatio de arte combinatoria, nella quale elabora le idee di Llull: partendo dall’alfabeto, attraverso permutazioni e combinazioni, è possibile ottenere qualsiasi proposizione. Partendo da un “alfabeto” di concetti basilari è possibile ottenere qualsiasi verità che discenda da quei concetti. 

Leibniz in questo modo presentava una logica nuova rispetto a quella dei filosofi classici: attraverso l’arte combinatoria la logica poteva essere utilizzata non solo per determinare la validità dei ragionamenti, ma anche a inventare e scoprire meccanicamente nuove verità.

La macchina aritmetica

Leibniz però non poteva accontentarsi di un metodo teorico per meccanicizzare la logica: non dimentichiamoci che all’epoca non esistevano quelle che oggi chiameremmo calcolatrici. La cosa che più si avvicinava ad una macchina calcolatrice automatica era la pascalina, progettata nel 1642 dal fisico, matematico e filosofo francese Blaise Pascal, che però era in grado di eseguire solo addizioni e sottrazioni. 

Per questo Leibniz inventò la sua macchina aritmetica, in grado di effettuare le quattro operazioni aritmetiche elementari. La macchina funzionava grazie alla “ruota di Leibniz”, un meccanismo molto ingegnoso che fino al ‘900 è stato ancora usato nelle macchine calcolatrici. Questa invenzione gli permise di essere ammesso alla Royal Society nel 1673 e quindi di entrare a far parte dei maggiori circoli intellettuali dell’epoca.

Leibniz inoltre continuò a perfezionare la sua macchina per tutta la sua vita, anni più tardi cercò anche di progettarne una in grado di effettuare operazioni nel sistema binario, ma rinunciò a costruirla per il numero troppo elevato di cilindri necessari al suo funzionamento.

Il sistema binario e gli esagrammi cinesi

Leibniz era estremamente interessato alle lingue: oltre al tedesco, sua lingua nativa, conosceva il latino, il greco, il francese e l’italiano. Era convinto che esistesse un linguaggio originale dal quale nacquero tutti gli idiomi esistenti e che dovesse esserci traccia di quella lingua in tutte quelle attuali. 

Leibniz era affascinato anche dalla scrittura cinese. La riteneva un ottimo esempio della sua idea di caratteristica universale. Nella terminologia di Leibniz una caratteristica era un sistema simbolico in cui ogni simbolo rappresenta un’idea, e dotato di regole di manipolazione specifiche. 

La scrittura cinese è articolata in modo molto diverso dalla nostra. È composta da caratteri di vario tipo:

  • ideogrammi (rappresentazioni di idee e concetti astratti, ad esempio: 上 (shàng, sopra) e 下 (xià, sotto))
  • pittogrammi (rappresentazioni per mezzo di disegni, ad esempio: 月 (yuè, luna) e 山 (shān, montagna))
  • composti fonetici (in cui è presente un componente fonetico che da un suono particolare al componente radicale, attribuendogli un significato diverso)
  • composti logici (unione di due caratteri che mantengono il loro significato per crearne uno nuovo)

Sono questi ultimi i più affascinanti dal punto di vista della caratteristica universale di Leibniz, rispettano in modo incredibile l’idea che Leibniz aveva di caratteristica! 

Vediamo alcuni esempi:

  • 家 (jiā, casa): rappresentato da un maiale (豕) sotto a un tetto (宀)
  • 明 (míng, luminoso): rappresentato dai due oggetti più luminosi in natura, il sole (日) e la luna (月)
  • 看 (kàn, guardare): qual è il gesto istintivo quando guardiamo un oggetto lontano, magari in una giornata particolarmente luminosa? Mettiamo una mano (手) sopra gli occhi (目), in modo da ripararli per guardare meglio

Per altre curiosità sulla lingua cinese consiglio di dare un’occhiata al sito Inchiostro Virtuale, estremamente interessante.

Ma non è questo l’unico motivo per cui Leibniz si interessò alla cultura cinese. 

Spesso faceva riferimento all’aritmetica e all’algebra come esempi di discipline che dimostrano l’importanza di un buon simbolismo riferendosi anche ai vantaggi che avevano le cifre arabe rispetto ai numeri romani per effettuare i calcoli. 

Quando scoprì la notazione binaria, rimase colpito dalla sua essenzialità. Leibniz vedeva in questo sistema un’analogia con la creazione partendo dal nulla. All’inizio era il nulla, lo 0, e il primo giorno c’era solo Dio, l’1. Dopo 7 giorni, dato che il 7 in binario è 111, esisteva già tutto, e non c’era nessuno zero. 

Joachim Bouvet, missionario in Cina che si trovava in permesso a Parigi nel 1697, venuto a conoscenza dell’interesse di Leibniz per il sistema binario e la cultura cinese, richiamò la sua attenzione sugli esagrammi dell’I Ching.

I 64 esagrammi

L’I Ching o Libro dei mutamenti è un antico trattato cinese che serviva per fare predizioni, come una specie di oracolo, scritto dal sovrano Fu Hsi intorno al 2400 a.C.

Si basa su una serie di simboli, formati da linee continue e discontinue, raggruppati in trigrammi. Se si uniscono a due a due tutti gli 8 trigrammi possibili otteniamo i 64 esagrammi possibili, formati da 6 linee. È immediato vedere, se consideriamo la linea spezzata come lo zero e quella continua come l’uno, come questa sia una possibile rappresentazione dei numeri da 0 a 63 in notazione binaria.

Utilizzando il sistema binario le regole che governano le operazioni diventano semplicissime! Basta sapere che $1+1=10$ e tutte le moltiplicazioni diventano automatiche. Per dividere un numero per un altro è praticamente sufficiente osservare quale dei due numeri è il  più piccolo. Molte proprietà inoltre diventano evidenti in questa notazione, per esempio, per raddoppiare un numero, basta aggiungere uno zero a destra.

Leibniz, per quanto fosse affascinato da questo sistema, riconosceva però che non sarebbe stato pratico usarlo per i calcoli quotidiani. Già per numeri relativamente piccoli effettuare operazioni in notazione binaria, pur non richiedendo quasi alcun dispendio cognitivo, richiede un enorme numero di passaggi.

La vera potenza del sistema binario è che è facilmente automatizzabile: basta ricordare pochissime regole per essere in grado di effettuare tutti i calcoli. Non è un caso che oggi sia alla base di tutta l’informatica: i computer lavorano con questo sistema e tutto ciò che passa attraverso un supporto digitale, come le immagini, l’audio, i video…è trasformato in una serie di uno e zero.

Riguardo a questo aspetto dell’argomento non posso che consigliare a tutti gli interessati di matematica la lettura del libro “Le due teste del tiranno” di Marco Malvaldi, in particolare del capitolo 2 “Quanto fa Mela Verde per TremalNaik?” nel quale il Funes di Borges è preso come spunto per parlare dell’idea di Leibniz e molto di più: cosa significa pensare.

Lo sviluppo del sogno di Leibniz

Per quanto Leibniz fosse convinto dell’importanza della caratteristica universale, fece pochi passi avanti nel realizzarla. Nel 1678 nello scritto Lingua Generalis, introdusse l’idea di rappresentare i concetti di base attraverso numeri primi e le proposizioni che si deducono da questi attraverso il prodotto di quei numeri primi.

Abbandonò questa idea dopo qualche tempo, considerandola troppo complicata e adottò un altro schema. Nel nuovo approccio riprendeva il metodo della divisione della logica aristotelica per ridurre tutti i concetti ai loro elementi più semplici. A questo scopo secondo Leibniz era necessario redarre un enciclopedia dell’intera conoscenza umana. Arrivò anche a scrivere un’introduzione per tale enciclopedia e a proporre un calcolo logico volto alla caratteristica universale. Questo calcolo logico presentava già alcuni aspetti che faranno parte dell’algebra della logica che Boole svilupperà circa un secolo e mezzo dopo.

Nel corso dei prossimi articoli vedremo come il sogno di Leibniz si è evoluto fino ai giorni nostri attraverso le scoperte delle grandi menti che si sono susseguite nello studio della logica.

Per approfondire

Una splendida trattazione della storia dell’informatica, che parte proprio dal sogno di Leibniz e racconta le conquiste logiche che ne hanno permesso lo sviluppo, la si può trovare nel libro Il calcolatore universale di Martin Davis.

Su youtube è presente una playlist di podcast del professor Odifreddi, che ripercorre la storia della logica dall’antichità fino ai giorni nostri. Vite da logico

6 (+1) regali di natale da fare ad un appassionato di matematica

Qualche giorno fa, sulla pagina Instagram, ho fatto la domanda che trovi qui a destra. L’obiettivo era proprio trovare qualche spunto in più per scrivere questo articolo che spero ti sia utile. Fare regali non è mai facile, per cui ho provato a raccogliere qualche idea magari un po’ originale se ti interessa sorprendere qualche amico, parente o chiunque altro sia appassionato di matematica.

Ah..prima di proseguire 😉 In tanti mi hanno detto che come regalo vorrebbero un po’ di CFU o una laurea, purtroppo però non ho alcun link da suggerirvi per comprarli ahah Però posso suggerirvi questi due articoli in cui do qualche consiglio sull’università:

  1. 8 consigli per gestire al meglio l’università di matematica
  2. Libri di testo consigliati per l’università

Ho deciso di organizzare la lista in 6 consigli principali e un settimo aggiuntivo (ecco il perché del +1 nel titolo) che a tanti non sarà utile ma, a seconda dell’età dell’interessato, so che potrebbe esserlo e lo confermano anche i numerosi suggerimenti che ho ricevuto alla domanda qui a destra.

Inoltre ti ricordo che se non segui ancora la pagina Instagram la puoi trovare qui: @mathoneig .

Nella pagina posto ogni giorno una foto con descrizione che ha l’obiettivo di divulgare qualche tema particolare e verso sera troverai anche un meme divertente, per chiudere in allegria la giornata. Ok, quindi cominciamo con i suggerimenti!

1. Libri divulgativi

Partiamo con il consiglio più scontato ma che sono sicuro sarà di grande impatto. Spesso succede che chi è appassionato di matematica lo sia perché gli piace studiarla, gli piace provare a costruire nuove idee e dimostrazioni, ma accade anche molto frequentemente che non abbia mai letto libri divulgativi o davvero molto pochi.

Questo può accadere per vari motivi, primo tra i quali il fatto che la divulgazione sia sottovalutata rispetto alla formazione tecnica. Certo, se vuoi capire nuovi settori della matematica e diventare esperto in quelli non puoi contare di farlo solo leggendo libri divulgativi, ma secondo me questi hanno un grande potere: sanno rendere semplici cose complicate e soprattutto incuriosire verso aspetti della matematica che magari non si conoscono nemmeno.

Per cui come primo punto di questa lista DOVEVO iniziare con i libri divulgativi. Ora te ne suggerirò tre in particolare, però qualche riga più in basso metto il link ad un articolo che avevo scritto in cui ne sono raccolti 50.

Se ti interessa acquistarne qualcuno, ci tengo a farti sapere che Amazon ha appena lanciato Prime Student, l’abbonamento Prime per gli studenti: tutti i benefici di Amazon Prime, ma a metà prezzo – solo EUR 18,00 all’anno.

Non è abbastanza? Hai un periodo d’uso gratuito di 90 giorni. Ti consiglio di sfruttarlo soprattutto se hai intenzione di leggere di più o fare i regali di natale http://bit.ly/sconto_studenti

Prima di iniziare con la lista però, ti lascio una breve puntata di podcast in cui ti parlo del perché, secondo me, leggere libri di divulgazione sia una gran cosa in quanto può aiutarti a riavvicinarti alla lettura e conoscere molte cose nuove riguardo la matematica in maniera leggera, per poi magari approfondirle:

Ecco la lista dei tre principali consigli che mi sento di darti. Ah..per semplicità quando scrivo nei paragrafi qui sotto farò finta che tu voglia farti un regalo, quindi parlo direttamente a te. Se stai cercando qualcosa per un amico, parente o chiunque altro cerca di valutare le cose che ti dico rispetto a lui/lei ovviamente 😉

Altra premessa, tutti i link ai libri qui sotto (e ai prodotti che si trovano su Amazon) sono link di affiliazione, per cui se acquisti direttamente da quelli non spenderai nulla in più ma mi verrà riconosciuta una percentuale, quindi senza alcuno sforzo e spesa aggiuntiva starai anche sostenendo il progetto Mathone e per questo ti ringrazio 😉

Apologia di un matematico

Se è un po’ che non leggi ma ti piacerebbe iniziare a scoprire il mondo della divulgazione e vedere se faccia per te, questo è sicuramente il libro da cui iniziare. Si legge in un pomeriggio, è scorrevole ed è molto ben scritto a mio parere. E’ un breve libro scritto da Hardy sul finire della sua vita, dove ha cercato di dare un senso a ciò che ha fatto per tutta la sua carriera: matematica.

Vuole infatti difendere (apologia vuol dire “difesa”) la matematica, dando spiegazioni dietro al suo motivo di esistere o di essere studiata. Ti consiglio vivamente di leggerlo 🙂

Se vuoi, ti lascio qui il link di Amazon: Apologia di un matematico

Il flauto di Hilbert

Questo libro e il successivo li ho entrambi iniziati ma non ho mai avuto il tempo di finirli, non perchè fossero noiosi (per nulla) ma perché fatalità li avevo presi entrambi in biblioteca in periodi molto impegnati, per cui non ho avuto proprio tempo di finirli. Mi prometto però di leggerli a breve perché sono consigliati da chiunque sia davvero appassionato di divulgazione e, a quanto posso dire dalle prime 50-70 pagine che ho letto, sia questo che il successivo meritano sul serio.

Ovviamente non posso lasciare alcuna recensione, se non dirti che il Flauto di Hilbert è un libro di storia della matematica davvero ben presentata, di scorrevole lettura. E’ più lungo del precedente ma vale di sicuro lo sforzo.

Se vuoi, ti lascio qui il link di Amazon: Il flauto di Hilbert

Gödel, Escher, Bach. Un’eterna ghirlanda brillante. Una fuga metaforica su menti e macchine nello spirito

Come anticipato, anche questo libro l’ho solo iniziato ma merita sul serio e per questo il prima possibile lo riprenderò per completarlo. E’ un viaggio tra matematica, arte, musica e intelligenza artificiale. Davvero un bel libro a quanto ho letto in giro e sentito da molti.

Se vuoi, ti lascio qui il link di Amazon: Gödel, Escher, Bach

Per la lista completa dei 50 titoli suggeriti, nel caso questi non ti piacciano o non ti sembrano adatti, la puoi trovare qui: I 50 migliori libri di matematica.

2. Lavagna a muro

Questa è stata una grande aggiunta alla mia camera quasi un paio d’anni fa. Certo, serve spazio, ma se hai un po’ di muro libero (o sei disposto a liberarlo), ti assicuro che studiare dimostrazioni o risolvere esercizi alla lavagna è un’altra cosa. Un lato molto positivo di avere una lavagna a muro è che nei pomeriggi di studio intenso, magari poco prima di un esame, ti sarà pesante stare ore e ore seduto a studiare o provare a riscrivere dimostrazioni, quindi è molto utile (per la mia esperienza) alternare momenti seduto a momenti in cui ti alzi, continuando a ripassare ma questa volta scrivendo alla lavagna.

Io l’ho presa anche per fare video su Youtube, che da gennaio 2020 riprenderanno ad uscire (con regolarità) quindi ti consiglio intanto di iscriverti al canale da qui: Mathone Video.

A dirti la verità io non l’ho comprata su Amazon ma, grazie ad un amico, sono riuscito a recuperare una lavagna che era stata restituita perché leggermente difettosa. Ma prima di avere questa occasione mi sono informato parecchio sulle migliori possibilità che Amazon aveva da offrire e quindi qui di seguito ti riporto le 3 sulle quali al tempo ero indeciso, soprattutto leggendo le descrizioni e le recensioni lasciate dai clienti nei commenti.

Intanto ti lascio i pennarelli che ho provato e che continuo a ricomprare quando si scaricano perché mi trovo davvero bene, li trovi qui: Pennarelli cancellabili.

Per la ragione dei pennarelli più economici, ho optato per una lavagna bianca. Sarebbe molto figo anche avere una classica lavagna nera dove si può scrivere con gessi o pennarelli a gesso liquido (che costano un botto), però i gessi li ho provati per un paio d’anni in camera (avevo attaccato un foglio di lavagna adesiva alla scrivania che trovi qui: Lavagna adesiva) ma dopo un po’ la camera diventava invivibile per sporco e polvere di gesso ovunque 😉

Passiamo quindi ai consigli sulle Whiteboards:

AmazonBasics – Lavagna magnetica bianca, cancellabile a secco, con supporto porta-pennarelli e bordi in alluminio, 120 cm x 90 cm:

Se vuoi guardare le recensioni e descrizioni su Amazon clicca qui: LINK AMAZON.

Nobo 1903772 Lavagna magnetica cancellabile a secco, Kit di montaggio incluso, Bianco, 58.5 x 43 cm:

Se cerchi qualcosa di più piccolino, economico ma comunque funzionale questa potrebbe essere giusta per te: LINK DI AMAZON.

Bi-Office Maya – Lavagna Magnetica Bianca, 120 x 90 cm, Con Cornice In Alluminio, Superficie Magnetica Acciaio Laccato:

Questa mi è sempre piaciuta, era quella per cui propendevo maggiormente e la puoi vedere qui: LINK AMAZON.

3. Accessori matematici

Questa è la sezione per cui ho ricevuto più messaggi. Me ne sono arrivati alcuni in cui si parlava di sciarpe a forma di Nastro di Moebius, cappelli a forma di Bottiglia di Klein, lampade a forme particolari, soprammobili curiosi per un appassionato di matematica e chi più ne ha più ne metta.

Ho quindi fatto una ricerca su Google riguardo alcuni accessori che potrebbero piacere ad un matematico e alcuni sono davvero fighi, ti metto qui sotto per ognuno di questi 5 link per andare a guardarlo ed un’immagine. Sono tutti cliccabili e se hai qualche ulteriore aggeggino da suggerire sarebbe molto interessante se lo scrivessi sotto all’articolo in un commento 😉

Tutti questi li puoi trovare su Amazon perché ho pensato anche ai tempi di spedizione più ragionevole, se invece sei disposto ad aspettare anche 5-6 settimane di consegna, ho trovato questo negozio di gadget molto ricco che però, spedendo dall’Inghilterra, mi sono ben guardato dal citarlo qui sotto perché le attese salgono parecchio. Ma se può interessarti ecco anche quel negozio: https://mathsgear.co.uk/

1. Forma per dolci a forma di PI Greco

Questo devo ammettere che è una genialata, per una bella torta a tema matematico ci sta perfettamente: STAMPO PER TORTA.

2. Tazza bianca per il caffè o il tè a tema matematico

Ecco il link di una tazza che ho creato apposta per noi appassionati di matematica 😉 : LINK ALLA TAZZA.

3. 3D Illusione Lampada Bottiglia di Klein Luce notturna USB 7 colori LED

Ecco una delle cose che mi avete suggerito maggiormente nella storia di Instagram, devo ammettere che non è male l’idea di averne una in camera 😉 La trovi qui: LINK AMAZON.

Stando a tema bottiglia di Klein, puoi trovare anche questa, un po’ più sobria ma sempre bella: STAMPA 3D.

4. Orologio a tema matematico

Qui va a gusti, o piace o non piace, però anche questo in molti me l’avete suggerito su Instagram per cui, perché non metterlo? Lo puoi trovare qui: LINK OROLOGIO.

5. Pendoli sincronizzati

Questo è davvero bello, di test ne potete fare un mondo e ti lascio qui sotto un video sulla sincronizzazione di questi pendoli da cui potrete prendere spunto per divertirvi…ah il link è qui: LINK PENDOLO

4. Rompicapo in legno (e non)

Questa sezione non mi è stata suggerita da nessuno su Instagram, con mia gran sorpresa in realtà. Spesso a chi piace la matematica piace ragionare, piacciono i problemi, gli indovinelli e…i rompicapo! Perché no!

Io non ne ho testati molti di rompicapo ma nel momento in cui me ne si presenta uno davanti mi intestardisco sopra e ci perdo un botto di tempo, quindi o lo riesco a risolvere o dopo un po’ mi arrendo e voglio cercare la soluzione online (il grande potere di Youtube).

Qualche anno fa avevo anche registrato un video in cui ne risolvevo uno su Youtube 😉 ora non lo trovo più quindi immagino che lo avessi cancellato poco dopo, era registrato al volo tanto per…più che altro per essere certo di sapere dove recuperare la soluzione nel caso mi fosse interessato riprovare a farlo. Da qualche parte ce l’ho ancora, sono sicuro ahah.

I rompicapo che ho in casa o che ho testato provengono tutti da mercatini che trovavo prevalentemente quando ero in vacanza, però per curiosità ho fatto una ricerca online e ho trovato una piattaforma che li vende molto interessante e seria. Mi sono anche sentito con il proprietario e devo dire che si vede proprio che ci tiene a quel sito e ai rompicapo 🙂

Se può interessarti l’idea di regalare o regalarti un rompicapo in legno ( e non ) ti consiglio di dare un’occhiata al loro sito: https://www.logicagiochi.com/it/prodotti/rompicapo-in-legno .

Ti lascio qui sotto l’immagine di un paio di rompicapo che ho testato:

Di questo avevo fatto la video risoluzione, è una figata 😉 Si chiama Rompicapo Evasione

5. Maglietta con stampa matematica

Di magliette con meme, citazioni e immagini divertenti sulla matematica se ne trovano un’infinità online e, se ti piace la matematica e vuoi vantartene, perché non prendersi una maglietta che magari in pochi sono in grado di capire? 😉

A dirti la verità ogni tanto mi viene anche in mente di creare un negozio online del genere con prodotti e magliette matematiche, magari più avanti lo faccio dai 🙂 Se ti piacerebbe magari scrivimelo nei commenti e dammi qualche consiglio che mi farebbe di sicuro comodo!

Siccome non devo certo stare qui a presentarti e spiegarti cosa sia una maglietta sulla matematica, ti lascio qui sotto le immagini cliccabili di alcune magliette simpatiche, inoltre dal link che trovi qui potrai anche accedere alla ricerca “maglietta matematica” su Amazon, te l’ho preparata nel caso ti interessi la tipologia 😉 : http://bit.ly/magletteMate

6. Abbonamento brilliant.org

In pochi conoscono brilliant.org (con questo link hai il 20% di sconto) ma questo è un sito che consiglio sempre quando ne ho l’occasione. E’ ricco di sfide, corsi, indovinelli e cose divertenti da scoprire. E’ una piattaforma dedicata all’approfondimento di matematica, fisica, informatica e molto altro ed il tutto è fatto in maniera coinvolgente e divertente.

La piattaforma consente di accedere ai contenuti anche in maniera gratuita ed io faccio così quando ho tempo, non ho mai testato l’abbonamento a pagamento onestamente. Ma a quanto ho potuto leggere online, vedere su Youtube e a quanto dicono sulla loro pagina web direi che per uno che ha del tempo libero ed è appassionato delle varie tematiche matematiche direi che sarebbe un bel regalo da ricevere.

Per cui se non conosci il servizio/piattaforma ti lascio qui sotto il video introduttivo al corso sulla relatività, giusto per farti un’idea del loro bello stile , mentre più in basso troverai un link per andare a vedere la piattaforma ed eventualmente regalare l’abbonamento a qualcuno (anche a te se ti va 😉 ). Qui ti dico chiaramente che non ho alcuna affiliazione, te lo consiglio semplicemente perchè lo trovo sul serio un bel modo di apprendere e mettersi alla prova.

Ecco il link al sito di brilliant: https://brilliant.org/ (con questo link hai il 20% di sconto)

(+1) Calcolatrice grafica

Il motivo per cui ho messo questa voce come punto aggiuntivo (+1) è perché a molti probabilmente non servirebbe a nulla questo oggetto (a me per esempio, non saprei come usarla), però ho ricevuto molte risposte su Instagram in cui mi veniva detto che sarebbe molto apprezzata come regalo. Mi immagino per esempio che tanti ragazzi che dovranno affrontare la maturità quest’anno o in futuro sanno cosa farsene e come usarla 😉

Per cui semplicemente qui sotto ti riporto le 3 migliori calcolatrici grafiche in base alle Recensioni su Amazon, che sono solitamente ciò che guardo prima di un acquisto, ovviamente dopo aver sentito il parere di amici o partenti nel caso loro abbiano già usato il prodotto.

Ecco qui le 3 calcolatrici grafiche migliori secondo Amazon. Invece di mettertele in ordine di Recensioni positive, visto che sono tutte ottime da quel punto di vista, te le metto in ordine crescente di prezzo:

Casio FX-9750 GII Calcolatrice Grafica senza CAS, Ampio Display Monocromatico a 8 Righe, 61kB RAM, Blu Scuro

Ecco il link di Amazon per scoprire i dettagli di questo modello: LINK AMAZON.

Casio FX-CG50 Calcolatrice Grafica senza CAS con Display a 65.000 Colori, Grafici 3D e Alimentazione a Batteria

Ecco la pagina Amazon del prodotto: LINK AMAZON.

Texas Instruments TI-Nspire CX – Calcolatrice Grafica Scientifica Schermo Colori Con Touchpad

Ecco il link di Amazon per le recensioni: LINK AMAZON.

Con ciò la lista dei consigli termina qui, spero di averti dato qualche spunto interessante per fare o farti un bel regalo. Se pensi che questo articolo possa piacere a qualche tuo amico condividilo, basta anche una storia con lo screen all’articolo taggando la pagina @mathoneig 😉 su Instagram!

La matematica conta: storia dei primi numeri

Leggere, scrivere e contare sono tra le attività più importanti che la nostra mente riesce a svolgere e costituiscono la base dello sviluppo umano. In questo articolo analizzeremo l’operazione di contare e il concetto strettemente legato di numero naturale. Mentre lettura e scrittura sono invenzioni relativamente recenti, diffuse a partire dal 3000 a.C. l’usanza del contare ha radici molto più antiche.

Perchè gli uomini hanno iniziato a contare?

Le prime tracce di conteggi risalgono addirittura al paleolitico. I principali reperti che testimoniano questa capacità sono un osso di lupo risalente al 40000 a.C e il cosiddetto osso di Ishago, risalente al 20000 a.C. Entrambi i ritrovamenti presentano delle tacche incise. Mentre per il primo non si può escludere si trattasse di una funzione decorativa; nel caso dell’osso di Ishago, l’asimmetria delle incisioni rende concordi gli studiosi nell’affermare che la finalità non fu estetica ma pratica.

Osso di Ishago

Ma che cosa contavano gli uomini nella preistoria? Non è difficile immaginare quali possano essere le utilità di un tale strumento: per un cacciatore era fondamentale sapere quante lance avesse a disposizione, mentre un raccoglitore era interessato a sapere quanti frutti era stato in grado di trovare in una giornata.
In seguito, con la diffusione dell’agricoltura e dell’allevamento, divenne ancora più importante saper contare: un pastore deve conoscere esattamente la quantità di pecore nel suo gregge, altrimenti rischia di dimenticarne qualcuna! Ah di pecore e numeri naturali ne avevamo parlato anche qui Numeri Naturali: dalle pecore al concetto di numero 😉 .

Piccole e grandi quantità

Nonostante il contare abbia risposto originariamente a problemi pratici, si tratta di un’operazione astratta e tutt’altro che naturale. Essa non va confusa con la capacità di distinguere piccole quantità di oggetti; per comprendere la differenza è sufficiente un rapido esperimento.
Quanti oggetti contengono i seguenti gruppi?

Ovviamente è molto semplice distinguere le differenze, senza la necessità di mettersi effettivamente a contare quante figure sono presenti in ogni insieme.
Questo però funziona solo con piccole quantità: prova a valutare il numero degli oggetti nei seguenti insiemi:

In questo caso è stato certamente più difficile capire il numero “a colpo d’occhio” e probabilmente sarà stato necessario contare le forme a piccoli gruppi di due o tre elementi per avere la certezza del numero totale.

Mentre la capacità di contare sembra essere prerogativa umana, la distinzione tra piccoli gruppi di oggetti è diffusa anche in alcuni animali, soprattutto uccelli. A questo proposito è interessante riportare un racconto risalente al Settecento.

I corvi sanno contare

Il corvo conta fino a 5

Un contadino voleva uccidere un corvo che aveva nidificato in cima a una torre, dentro ai suoi poderi. Ogni volta che si avvicinava, però, l’uccello volava via, fuori dalla portata del suo fucile, finché il contadino non si allontanava. Solo allora l’animale ritornava nella torre, riprendendo le incursioni sui terreni dell’uomo. Il contadino pensò allora di chiedere aiuto a un suo vicino. I due, armati, entrarono insieme nella torre e poco dopo ne uscì soltanto uno. Il corvo però non si lasciò ingannare, e non ritornò al nido finché non fu uscito anche il secondo contadino. Per riuscire ad ingannarlo entrarono poi tre uomini e successivamente quattro e cinque. Ma il corvo ogni volta aspettava che fossero usciti tutti prima di far ritorno al nido. Soltanto in sei finalmente, i contadini ebbero la meglio, infatti il corvo aspettò che cinque di loro fossero usciti e quindi fiducioso rientrò sulla torre, dove il sesto contadino lo uccise.

Stimolati da questo racconto, diversi studiosi si sono interessati dell’effettiva capacità di conto di alcuni animali, in particolare l’etologo tedesco Otto Koehler dimostrò con una serie di esperimenti che il suo corvo, Jacob era in grado di contare fino a 6, quindi al contadino per stanarlo sarebbe servita una persona in più rispetto a quelle del racconto!

Terzetti e numeri naturali

É giunto il momento di interrogarci sul vero significato del contare. Fino ad ora abbiamo dato per scontato un legame tra il processo di conteggio e i numeri naturali. Essi sono talmente basilari che raramente ci soffermiamo sul loro reale significato.


L’idea, apparentemente banale, che sta alla base dei numeri naturali e di conseguenza del conteggio è che un terzetto di pecore, un terzetto di mele e un terzetto di pietre hanno una cosa in comune: il numero 3!
Tuttavia, come spiega il filosofo e matematico Bertrand Russell, nel suo saggio “Introduzione alla filosofia matematica”, non bisogna commettere questo fraintendimento: “Un terzetto d’uomini è un esempio del numero tre, e il numero tre è un esempio di numero; ma il terzetto non è un esempio di numero“.

Tutti i terzetti hanno in comune il numero 3, ma nessuno dei terzetti costituisce il numero 3. Essi sono ben distinti dai duetti e dai quartetti, e ciò che li distingue è proprio il fatto di essere 3. Quindi un numero è la caratteristica comune a tutti gli insiemi costituiti da quel determinato numero di elementi. Il numero 7 per esempio è tecnicamente definito come l’insieme degli insiemi di 7 elementi.

Un’apparente tautologia

Questa affermazione sembra tautologica: come posso sapere il “numero di elementi di un insieme” se non conosco la definizione di numero e non so nemmeno cosa significhi contare?
Immaginiamo di avere duetti, terzetti e in generale insiemi di $n$ elementi, come posso raccogliere tutti quelli con lo stesso numero di elementi senza effettivamente contarli?
Russell utilizza il criterio della corrispondenza biunivoca. Dati due insiemi, essi hanno la stessa cardinalità (numero di elementi) se e solo se è possibile creare una funzione biunivoca tra i due. Ovvero una funzione che ad ogni elemento del primo insieme associa uno e un solo elemento del secondo.

In questo modo è possibile raggruppare gli insiemi con la stessa cardinalità senza presupporre la capacità di contare. Fatto ciò è sufficiente dare un nome agli insiemi di insiemi (1 a quelli di 1 elemento, 2 a quelli di 2 e così via). In questo modo abbiamo definito i numeri in maniera consistente!

Cosa significa contare?

A questo punto resta solo da capire cosa significhi contare. Anche in questo caso è utile ragionare in termini di corrispondenze biunivoche. Soffermiamoci sul caso dell’osso di Ishago, su di esso ogni tacca sta a rappresentare un’unità. Non si sa cosa sia stato contato in questo modo, supponiamo i frutti raccolti durante la giornata. Ad ogni frutto corrisponde una tacca, quindi esiste una corrispondenza biunivoca tra l’insieme dei frutti e l’insieme delle tacche. Astraendo possiamo asserire che l’operazione di contare non è nient’altro che creare una corrispondenza biunivoca tra l’insieme degli oggetti da contare e un sottoinsieme dei numeri naturali!

Se vuoi approfondire ti consiglio l’articolo GEORG CANTOR: QUANTO È INFINITO L’INFINITO? in cui Lorenzo spiega come contare insiemi di infiniti elementi!

Spero che questo articolo ti sia piaciuto, nel prossimo vedremo come il concetto di numero si è evoluto nelle diverse culture. Ospite speciale: il numero 0!

Se ti interessa l’argomento dei numeri, del contare e la matematica più in generale ti consiglio questo libretto leggero ma interessante: L’uomo che sapeva contare

La ruota quadrata : nascita del problema e una sua analisi

La ruota è considerata una delle invenzioni più rivoluzionarie della storia dell’uomo. Ha subito numerosi perfezionamenti nel tempo, ma la forma è rimasta sempre inalterata: un cerchio. Per questo motivo, una ruota di forma differente sembra un’idea bizzarra e inutile, men che meno una ruota quadrata.

Nascita del problema della ruota quadrata

Ora immaginate di trovarvi nell’antico Egitto, e per la costruzione di un edificio dovete spostare dei pesantissimi blocchi di roccia squadrati. Quale potrebbe essere il metodo più efficace?

Gli antichi egizi notarono una cosa: se tagliavano in più parti dei tronchi di legno, e li disponevano per terra uno a fianco dell’altro, i blocchi potevano rotolare! Era la prima formulazione e soluzione approssimativa del problema: “Quale dovrebbe essere la forma della strada per far si che una ruota quadrata rotoli regolarmente?”.

Risoluzione analitica

Perchè le ruote rotolano? Tutta la loro efficienza deriva dal fatto che il loro baricentro rimane sempre alla stessa altezza, e che il peso è sempre perfettamente concentrato nel suo punto d’appoggio. Quindi, dobbiamo trovare un pavimento che permetta le stesse caratteristiche anche a una ruota quadrata.

Vi invito a provare a risolvere questo problema, è necessario solo sapere un po’ di matematica da quinta liceo e avere un buon intuito.

Cerchiamo l’equazione di un singolo dosso, che permetta il rotolamento a una ruota quadrata di lato 2 (questo aiuta la risoluzione semplificando i calcoli). Il baricentro deve rimanere sempre alla stessa altezza.

rappresentazione analitica del problema

Ecco in breve i passaggi risolutivi. Se affrontati senza timore, ci ricompenseranno, scoprendo una proprietà molto interessante di questa curva. Tranquilli, io cercherò di essere il più chiaro possibile, ma se la sola vista di integrali e equazioni differenziali vi causa un pochino di nausea, potete tranquillamente scrollare al prossimo sottotitolo, nessuno lo verrà mai a sapere. Forse 😉

Chiamiamo $B$ il segmento che unisce il baricentro del quadrato al punto di appoggio con la curva. La richiesta è che il baricentro sia sempre alla stessa altezza, quindi che $f(x) + B = \kappa$ dove $\kappa$ è una costante. Si nota facilmente che l’altezza deve essere esattamente metà della diagonale del quadrato, quindi $\kappa = \sqrt{2}$. Siamo sulla buona strada, dopo aver ottenuto $f(x) + B = \sqrt{2} $ , dobbiamo solo capire come varia $B$ rispetto a $f(x)$.

Se applichiamo il teorema dei seni al triangolo (guardate la figura qua sopra), otteniamo che $\frac{\sqrt{2}}{sin(90+\alpha)}=\frac{B}{sin(45°) }$ quindi che $B=\frac{1}{sin(90+\alpha)}$. Sostituiamo $sin(90°+\alpha)=cos(\alpha)$ e otteniamo $B=\frac {1}{cos(\alpha)}$. In seguito, sappiamo che il lato del quadrato è tangente alla curva, quindi che l’angolo $\alpha$ dipende dalla derivata della funzione. In particolare, $\alpha=\arctan{(f'(x))}$ . Ora ci siamo quasi.

Ripartendo da $f(x)+B= \sqrt{2} $, sostituiamo tutti i calcoli e otteniamo $ f(x) + \frac{1} {cos(arctan[f'(x)])} = \sqrt{2}$

Qui vengono in aiuto delle comode formule sulle funzioni goniometriche composte, in particolare $cos(arctan(x))=\frac {1} {\sqrt {1+x^2}}$

Sostituendo tutto, otteniamo che $f(x)+\sqrt {1+[f'(x)]^2} = \sqrt{2}$, una equazione differenziale piuttosto minacciosa. Per trovare la sua soluzione esatta ci manca solo un valore numerico. Per esempio, se vogliamo ottenere la curva simmetrica rispetto all’asse delle ascisse, $f'(0)=0$, è abbastanza intuitivo. Così otteniamo il seguente problema di Cauchy, sempre piuttosto minaccioso.

$\begin {cases}f(x)+\sqrt {1+[f'(x)]^2} = \sqrt{2} \\f'(0)=0\end{cases}$

A questo punto, Wolfram Alpha non è poi una cattiva idea. Tuttavia, se siamo proprio coraggiosi, possiamo proseguire e notare che nell’espressione compare solo $f(x)$ e mai la $x$, quindi è un’equazione differenziale a variabili separabili. Basta elevare tutto alla seconda per sbarazzarsi della radice, isolare $f'(x)$, separare $dy$ e $dx$ e integrare da entrambe le parti; una passeggiata praticamente.

Soluzione

Adesso che abbiamo risolto il problema, con o senza qualche aiutino, arriva la parte interessante. L’equazione del pavimento che permetterebbe a una ruota quadrata di rotolare è la seguente: $f(x) = \sqrt{2}-\frac{1}{2}(e^x + e^{-x})$, ovvero $f(x) = \sqrt{2} -\ cosh{(x)}$; vi ricorda qualcosa questa funzione? Siamo davanti a una catenaria!

(Nel caso non conosciate questo tipo di curva, vi invito a dare un’occhiata a questo articolo: La catenaria: una curva ricca di proprietà e che piace alla natura).

Bene. Una ruota quadrata rotolerebbe perfettamente su un pavimento fatto di catenarie rovesciate, ovvero la stessa figura che forma una catena tenuta sospesa tra due pali. Aspetta un secondo, perchè?? I due problemi sono correlati? Sarà una coincidenza? No, non fidatevi mai delle coincidenze della matematica.

Stiamo guardando la stessa situazione da 2 diversi punti di vista. La catena si dispone in modo che tutto il suo peso sia egualmente distribuito in ogni punto. In modo analogo, il baricentro della ruota quadrata, mentre rotola, coincide sempre con il punto d’appoggio, dunque il suo peso è egualmente distribuito in ogni punto della superficie sottostante. Di conseguenza, è chiara la correlazione tra le due curve, dubitate sempre delle coincidenze!

Inoltre, questa è esattamente la stessa proprietà per la quale la catenaria viene utilizzata in architettura: distribuire uniformemente il peso di un ponte o di un arco, per rendere più stabile e resistente la struttura.

Esempio dell’utilizzo di catenarie in architettura

Possibili applicazioni della ruota quadrata

Adesso, se fossimo nell’antico Egitto, saremmo in grado di spostare i nostri massi con il minimo sforzo e poter costruire il nostro bell’edificio. Ma a noi, a cosa è servito?

Analizzare e risolvere un problema ci permette di studiare e capire un modello semplificato. Con tutto ciò che abbiamo appreso, possiamo studiare situazioni simili, dalla maggiore complessità, ma più reali.

Per esempio, quale sarebbe la forma migliore per uno pneumatico da competizione per moto? Rotondo sì, ma se consideriamo la sua sezione? Bisogna avere una forma che permetta alla moto, anche se a grandi angoli di piega, di garantire la massima aderenza con il terreno.

Sezione di uno pneumatico da moto

Sapreste dire quale equazione descrive il profilo dello pneumatico? O almeno quale sarebbe quello matematicamente ideale? Sicuramente ci troviamo davanti a un problema molto più complesso, nel quale entrano in gioco molte più variabili da tener conto. I diversi angoli di piega, la deformazione della gomma, la pressione interna… Ma aver risolto precedentemente il problema della ruota quadrata almeno ci fornisce indizi per approcciare il problema. Se siete appassionati di moto, vi lascio un video youtube a riguardo, da un punto di vista più fisico e ingegneristico, che personalmente ho trovato molto interessante:

Se invece siete più interessati solo all’aspetto matematico, potete provare a risolvere lo stesso problema non solo per una ruota quadrata, ma anche per una pentagonale, esagonale… Potete generalizzare e trovare la soluzione per un qualsiasi poligono regolare al variare del numero dei lati e delle sue dimensioni. Le ipotesi di partenza sono molto simili, diventa solo via via sempre più complesso. Vi sorprenderà forse sapere che la catenaria non salta fuori solo nello studio di una ruota quadrata, ma da qualsiasi tipo di ruota poligonale, con dei parametri leggermente variati. Se davvero vi siete innamorati dell’idea di trovare pavimenti per qualsiasi tipo di ruota, sono un po’ preoccupato per voi, ma vi lascio un articolo qua sotto che analizza il caso più generale possibile.

Per concludere, visto che abbiamo tanto parlato di ruota quadrata di qua e ruota quadrata di là, ma ancora non avete visto una sua applicazione, vi lascio qua sotto il video di una bicicletta bizzarra che scorre in modo perfettamente regolare su un pavimento composto da dossi:

Risorse per approfondire l’argomento

Generalizzazione totale: esiste un pavimento per ogni possibile ruota? https://www.researchgate.net/publication/254616950_Roads_and_Wheels

Il problema della ruota quadrata (esame di maturità 2017): https://redooc.com/it/superiori/matematica-maturita/soluzioni-matematica-maturita-2017/maturita-2017-problema-1-soluzione#problema1-introduzione

Spazio di Hilbert (PARTE 1) : concetti base e cenni storici

Magari ti è già capitato di sentire nominare Hilbert, ma a meno che tu non abbia già seguito un corso di analisi funzionale o qualcosa di analogo, probabilmente non sai cosa sia uno spazio di Hilbert.

Andremo quindi alla scoperta di questi particolari spazi, vedendone un po’ di storia, una caratterizzazione formale e rigorosa, le principali proprietà, alcuni esempi e per finire introdurremo l’importante concetto di Serie di Fourier generalizzata parlando di proiezioni.

In questo articolo lascerò da parte gli ultimi tre punti di questa lista, “limitandomi” quindi a introdurre alcuni concetti base e a fare un preambolo storico, perché altrimenti verrebbe troppo lungo. Termineremo quindi questo percorso alla scoperta degli spazi di Hilbert in un secondo episodio che scriverò tra non molto. Se vedo che sarebbe troppo lungo anche il secondo non si sa mai che lo spezzi in un ulteriore terzo, tanto di cose da dire ce ne sarebbero una marea 😉

Di strada da fare quindi ne abbiamo parecchia, ma cercherò di renderla il più scorrevole e piacevole possibile quindi, cosa stiamo aspettando?! Iniziamo con il succo dell’articolo!

Prima di iniziare ti lascio una piccola legenda della notazione matematica che userò, e che è usata classicamente, per rendere il testo più scorrevole (nel caso tu non ci fossi già abituato):

  • $v\in V$ vuol dire che l’elemento $v$ appartiene all’insieme $V$
  • $\exists x\in X$ significa che esiste una $x$ nell’insieme $X$
  • $\forall x\in X$ sta ad indicare per ogni $x$ dell’insieme $X$.

Definizioni e concetti base che useremo per scoprire gli spazi di Hilbert

Per poter parlare di spazi di Hilbert, è necessario che alcuni concetti siano noti, vediamo quindi di sintetizzarli in questo paragrafo 😉 . Non voglio fare sbrodoloni inutili in questa sezione, per cui tutte queste nozioni sono organizzate qui sotto in maniera sintetica ma più che sufficiente per capire il seguito dell’articolo e soprattutto le prossime puntate.

Spazio vettoriale su $\mathbb{R}$

Diciamo spazio vettoriale rispetto al campo $\mathbb{R}$ un insieme $V$, i cui elementi saranno chiamati vettori, equipaggiato di due operazioni

$+ : V\times V\rightarrow V$ e $* : \mathbb{R}\times V \rightarrow V$ tali che soddisfino le seguenti proprietà:

  • $(V,+)$ è un gruppo abeliano, ovvero:
  1. Esiste un elemento neutro $0_V$ rispetto a $+$, quindi esiste $0_V$ tale che $a+0_V=a\,\forall a\in V$.
  2. Esiste un elemento inverso rispetto a $+$, quindi esiste un $\bar{a}$ tale che $a+\bar{a}=0_V\,\forall a\in V$.
  3. L’operazione $+$ è associativa, ovvero $(a+b)+c=a+(b+c)$, $\forall a,b,c\in V$.
  4. Vale la proprietà commutativa (perché è abeliano): $a+b=b+a$, $\forall a,b\in V$.
  • Vale la proprietà distributiva tra $*$ e $+$:
  1. $k*(a+b) = k*a + k*b$, $\forall a,b\in V,\,k\in\mathbb{R}$.
  2. $(k+m)*a = k*a + m*a$, $\forall k,m\in\mathbb{R},\,a\in V$.
  • Proprietà di neutralità
  1. Se $1_{\mathbb{R}}*k = k\,\forall k\in\mathbb{R}$, allora deve valere che $1_{\mathbb{R}}*a=a\,\forall a\in V$.

P.S. Ci tengo a sottolineare che le due operazioni $+$ e $*$ non sono necessariamente le classiche addizione e moltiplicazione che siamo abituati a usare con i numeri reali. Si possono definire le più svariate operazioni sullo spazio $V$, purché la terna $(V,+,*)$ soddisfi le proprietà elencate qui sopra 🙂 . D’ora in poi parleremo di spazio vettoriale $V$ per denotare questa terna, quindi si sottintende che esso sia equipaggiata di due operazioni come sopra.

Prodotto scalare

Dato uno spazio vettoriale $V$ possiamo introdurvi un prodotto scalare, che è un’operazione tra elementi $v,w\in V$ che soddisfa alcune proprietà. Vediamo quindi come definirlo:

Un prodotto scalare sullo spazio vettoriale $V$ è un’operazione $\langle\cdot\,,\,\cdot\rangle : V\times V\rightarrow \mathbb{R}$ tale che

  1. $\langle v,v \rangle \geq 0$ per ogni $v\in V$, ovvero è un’operazione definita positiva, in particolare è $=0$ se e solo se $v=0_V$.
  2. Sia simmetrica, ovvero $\langle v,w\rangle = \langle w,v\rangle$ per ogni $v,w\in V$.
  3. Sia bilineare, data la simmetria però basta la linearità rispetto al primo termine:
  • $\langle kv,w \rangle = k\langle v,w\rangle$ per ogni $k\in\mathbb{R}$ e $v,w\in V$.
  • $\langle v+v’,w\rangle = \langle v,w \rangle + \langle v’,w\rangle.$

Si dice il prodotto scalare essere degenere, e quindi non ben definito, se esiste un vettore $w\neq 0$ tale che

$\langle v,w \rangle = 0$ per ogni $v\in V$, ovvero un vettore $w\in V$ perpendicolare a tutti gli altri vettori di $V$.

Infatti il concetto di prodotto scalare, deve essere ricondotto da un punto di vista geometrico al concetto di proiezione ortogonale. In particolare quando si calcola $\langle v,w\rangle$ non si sta altro che cercando la lunghezza della proiezione di $v$ lungo $w$ (o viceversa) rispetto ad una particoalre proiezione.

Questo è un classico esempio dove lo spazio vettoriale usato è $\mathbb{R}^2$ e la proiezione standard, quella basata sul prodotto scalare euclideo.

Un prodotto scalare è in grado di definire una norma, ovvero una nozione di lunghezza, sullo spazio $V$. Per farlo si può semplicemente procedere così: $||v|| = \langle v,v \rangle ^{\frac{1}{2}}$ per ogni $v\in V$. L’idea dietro a questa definizione e di definire la norma come la lunghezza della proiezione di un vettore su se stesso.

Prima di proseguire, vediamo un’importante proprietà che segue da quelle che caratterizzano il prodotto scalare: la disuguaglianza triangolare.

Questa si può esprimere così: $||u+v||\leq ||u|| + ||v||$ per ogni $u,v\in V$. In termini pratici, hai già visto di sicuro questa disuguaglianza quando hai studiato i triangoli. Ricordi infatti che la somma delle lunghezze di due lati è sempre maggiore del terzo singolarmente? Ecco, se ogni lato lo vedi come un vettore tutto torna 😉

Se vuoi approfondire il concetto di prodotto scalare ti consiglio questa pagina: Prodotto scalare.

Proiezione ortogonale

Ci siamo, vediamo l’ultimo concetto per poi passare a parlare sul serio di spazi di Hilbert! 🙂 Se ti è capitato di studiare un minimo la geometria nello spazio euclideo $\mathbb{R}^n$, anche solo in $\mathbb{R}^2$ è sufficiente, certo saprai che in questo spazio è ben definito un prodotto scalare.

In particolare lo possiamo definire come segue presi due vettori $\vec{x},\vec{y}\in\mathbb{R}^n$, dove $\vec{x}=(x_1,x_2,…,x_n)$ mentre $\vec{y}=(y_1,y_2,…,y_n)$:

$\langle (x_1,x_2,…,x_n), (y_1,y_2,…,y_n)\rangle := x_1\cdot y_1 + x_2\cdot y_2 + … +x_n\cdot y_n = \sum_{i=1}^n x_i\cdot y_i.$

Grazie all’esistenza di un prodotto scalare possiamo anche parlare di proiezione ortogonale , che in termini intuitivi si equivale al concetto di ombra. Infatti ti sarai certamente accorto che, nella realtà, quando un oggetto come una matita è posto in posizione inclinata sopra una superficie, con una luce che lo illumina dall’alto, sul tavolo potrai vedere un’ombra. Bene, da un punto di vista matematico quest’ombra si chiama la proiezione ortogonale del vettore matita sul piano del tavolo 😉 .

In alternativa potresti anche proiettare un vettore su un altro vettore, rappresentando il concetto intuitivamente nello stesso modo.

Nell’immagine qui sopra non ho una luce perfettamente sopra la penna, ma il concetto penso sia chiaro. Infatti nonostante la luce venga un po’ in diagonale, abbiamo un ombra sul tavolo. Questa non sarà una proiezione ortogonale ma qualcosa di leggermente diverso, ma non curiamocene visto che non è questo il tema dell’articolo. La foto qui sopra vuole solo essere da immagine per capire ciò di cui stiamo parlando 😉

Per concludere, come si calcola la proiezione ortogonale (che d’ora in poi chiamerò solo con proiezione) di un vettore $v=(v_1,…,v_n)\in\mathbb{R}^n$ su un vettore $w=(w_1,…,w_n)\in\mathbb{R}^n$?

Beh, è molto semplice! Per trovare la lunghezza del vettore di proiezione basta fare il prodotto scalare tra i due vettori, poi basta trovare la direzione lungo la quale si trova $w$ e quindi moltiplicare la lunghezza della proiezione per questo vettore unitario di direzione 😉 Ma vediamo un po’ di conti che sono sicuro che ti chiariranno il concetto. Qui sotto denoteremo con $P_w(v)$ il vettore proiezione ortogonale di $v$ lungo il vettore $w$.

$P_w(v) = \langle v,w\rangle \frac{w}{||w||} = \frac{1}{\sqrt{w_1^2+…+w_n^2}}(w_1,…,w_n) \sum_{i=1}^n v_i\cdot w_i $.

Dove all’inizio vedi il vettore $w’= \frac{w}{||w||} $, intendo il vettore unitario di direzione lungo la quale vive il vettore $w$, infatti ho usato il vettore $w$ è l’ho diviso per la sua norma, così che $||w’||=1$. Chiaramente, visto che stiamo parlando di $\mathbb{R}^n$ mi è venuto naturale spiegarti questi concetti usando norma euclidea e il classico prodotto scalare euclideo, ma si può fare lo stesso discorso con un qualunque prodotto scalare e la relativa norma indotta. Infatti la prima uguaglianza qui sopra vale ancora, poi quando ho esplicitato i conti invece va sostituita la corretta norma e prodotto scalare.

Ci siamo! Ora siamo pronti per addentrarci negli spazi di Hilbert, che sostanzialmente ambiscono a definire questi strumenti su spazi più generali, a dimensione infinita in particolare. Ma non spaventarti, pian piano ti sarà tutto più chiaro.

Ti faccio una doverosa premessa…la parte storica qui sotto nomina parecchi concetti avanzati che provo a spiegarti ma se non li hai mai sentiti immagino sarà di difficile lettura. Per cui se ti interessa sapere cosa si nasconde nella storia dietro il concetto di Spazio di Hilbert ti consiglio di fare un tentativo, magari non capirai tutto ma in linea generale lo sviluppo e le motivazioni dietro questo oggetto matematico ti saranno chiari 🙂

Altrimenti, se al momento non hai voglia di cose difficili o se non ti interessa la parte storica e preferisci aspettare che esca la seconda puntata sulle proprietà e sugli esempi, ci possiamo salutare qui e amici come prima .

Un po’ di storia sugli spazi di Hilbert

Prima dello sviluppo del concetto di spazio di Hilbert, furono ottenute altre generalizzazioni degli spazi Euclidei $\mathbb{R}^n$, che erano note ed utilizzate sia da fisici che matematici. In particolare, l’idea di uno spazio lineare astratto maturò e ricevette sempre più interesse verso la fine del 19° secolo.

Questo spazio a cui si arrivò, era uno spazio i cui elementi potessero essere sommati tra loro e moltiplicati per uno scalare (un numero reale o complesso per esempio) senza però doverli necessariamente associare con il classico vettore geometrico di $\mathbb{R}^n$. Un esempio classico sono gli spazi di matrici, che godono tranquillamente di queste proprietà ma non sono intuitivamente associabili all’immagine di un vettore (in realtà si può fare questa associazione, ma non è necessaria per poter lavorare con le matrici).

Anche altri oggetti studiati dai matematici a cavallo del 20° secolo, in particolare gli spazi di sequenze e gli spazi di funzioni, possono essere naturalmente intesi come spazi lineari (ti ricordo che per spazi lineari, di per sè, intendiamo gli spazi vettoriali di cui abbiamo parlato prima 😉 ).

Le funzioni, per esempio, possono essere sommate tra loro e moltiplicate per una costante, e queste operazioni obbediscono alle classiche proprietà delle operazioni di somma e prodotto per uno scalare che rispettano i vettori nello spazio Euclideo.

Nel primo decennio del 20° secolo, sviluppi paralleli portarono all’introduzione degli spazi di Hilbert. Il primo di questi sviluppi fu l’osservazione, emersa quando David Hilbert e Erhard Schimidt stavano studiando le equazioni integrali (se non ne hai mai vista una ecco qui qualcosa che può esserti utile: equazioni integrali), che due funzioni quadrato sommabili a valori reali, $f$ e $g$, su un intervallo $[a,b]$ (ovvero $f,g:[a,b]\rightarrow\mathbb{R}$), ammettono un prodotto scalare:

$\langle f,g\rangle = \int_a^b f(x)g(x)dx$

che ha tutte le classiche proprietà a cui siamo abituati per il prodotto scalare dei vettori nello spazio $\mathbb{R}^n$ e di cui abbiamo parlato in generale nel paragrafo sopra.

Ah…per non spaventare nessuno, quando scrivo che una funzione è “quadrato sommabile”, intendo che l’integrale del quadrato della funzione è finito:

$\int_a^b f^2(x)dx < +\infty$.

Un esempio di funzione che non è quadrato sommabile è la funzione $f(x)=\frac{1}{\sqrt{x}}$ nell’intervallo $[0,1]$, infatti si ha:

$\int_0^1 \Big(\frac{1}{\sqrt{x}}\Big)^2dx = \int_0^1 \frac{1}{x} dx = \log{1}-\lim_{x\to 0^+} \log{x} = +\infty$.

Giusto per completezza, ti dico che lo spazio delle funzioni che hanno questa proprietà si denota solitamente con $\mathcal{L}^2([a,b])$ ed è uno spazio di Hilbert se equipaggiato del prodotto scalare definito qualche riga più in su.

Schmidt sfruttò le somiglianze tra questo prodotto interno (scalare) con il classico prodotto di $\mathbb{R}^n$ per dimostrare una versione ampliata del teorema spettrale dell’algebra lineare (se non lo conosci qui trovi una bella spiegazione: Teorema spettrale) per ottenere una decomposizione di un operatore della forma:

$f(x)\rightarrow \int_a^b K(x,y)f(y)dy$

con $K$ che è una funzione continua e simmetrica di $x$ ed $y$. Questo operatore è chiamato operatore di Hilbert-Schmidt (questa non tutti la capiranno, ma va bene così: symmetric self-adjoint, smooth compact!)

Il secondo sviluppo che portò alla costruzione della nozione di spazio di Hilbert fu l’integrale di Lebesgue. Questo è un’alternativa all’integrale di Riemann che solitamente si studia ad analisi 1 e che è poi quello che si vede anche in quinta superiore 😉

Questo “nuovo integrale” fu introdotto da Henri Lebesgue nel 1904 e permise di integrare più funzioni, una classe più ampia di funzioni. Questo integrale permise, nel 1907, a Frigyes Riesz e Ernst Sigismund Fischer di dimostrare, indipendentemente, che lo spazio $\mathcal{L}^2$ di cui ti ho parlato prima è uno spazio metrico completo.

La completezza è una proprietà fondamentale di $\mathbb{R}^n$ e questo non fa che aumentare le somiglianze tra gli spazi euclidei e questa nuova tipologia di spazi che questi grandi matematici stavano introducendo. Se non conosci il termine spazio completo ti consiglio di dare una letta qui, è spiegato in modo chiaro: Spazio metrico completo.

Come conseguenza naturale del forte legame tra la geometria dello spazio Euclideo e il risultato di completezza, i risultati del 19° secolo raggiunti da Joseph Fourier (se vuoi qui trovi un articolo che avevo scritto sulla Trasformata di Fourier che è strettamente legata con ciò di cui stiamo parlando), Friedrich Bessel e Marc-Antoine Parseval sulle serie di Fourier, o comunque sulle serie trigonometriche, si generalizzarono a questi spazi più ricchi e “potenti”. Andarono così a costituire la struttura geometrica e analitica del teorema di Riesz-Fischer.

Chiudo questa serie di teoremi importanti con il riferimento a un altro che è obbligatorio citare, il teorema di Rappresentazione di Riesz. Questo, in linea pratica, dice che ogni funzione lineare

$L(\alpha v + w) = \alpha L(v) + L(w)$, $\forall \alpha\in\mathbb{R}$ o $\mathbb{C}$ e $\forall v,w\in H$

e continua definita da uno spazio di Hilbert a $\mathbb{C}$ oppure $\mathbb{R}$ (a seconda del campo su cui $H$ è spazio vettoriale), che in gergo è chiamato funzionale lineare a continuo $L:H\rightarrow \mathbb{R}\,(L\in H’)$, può essere associata ad uno ed un solo elemento $v_L$ dello spazio di Hilbert, in modo che applicare la funzione $L$ ad un vettore $w\in H$ equivale a moltiplicare questo vettore $w$ per il rappresentante $v_L$:

$L(w) = \langle v_L,w \rangle$ per ogni $w\in H$.

Se ci pensi, è un po’ come la matrice associata univocamente ad ogni funzione lineare che si vede in algebra lineare (se non conosci questo risultato, qui trovi una spiegazione molto chiara : Matrice associata a un’applicazione lineare) , solo che qui va richiesta la continuità perché, su spazi a dimensione infinita, si possono costruire funzioni lineari ma non continue 😉 .

Bene, prima di passare alle motivazioni fisiche dello sviluppo della teoria sugli spazi di Hilbert, ci tengo a dirti che quest’ultimo teorema fu dimostrato in via indipendente da Maurice Fréchet e Frigyes Riesz nel 1907.

Ah..un’ultima cosa! Ma chi ha introdotto il termine SPAZIO DI HILBERT? Il colpevole è John von Neumann, che coniò il termine spazio di Hilbert astratto nel suo lavoro sugli operatori Hermitiani illimitati. Von Neumann fu di per sé il primo a fornire una trattazione completa e assiomatica di questi spazi, prima di lui i matematici li utilizzavano ma più per interesse fisico.

Ma quindi servono a qualcosa questi spazi? Sono usati per la fisica? Proprio così, la motivazione principale che portò alla formalizzazione di questi spazi fu il fornire una struttura matematica alla meccanica quantistica. Infatti gli stati in un sistema quantistico sono vettori in un certo spazio di Hilbert.

Ma non mi dilungo oltre su questo tema, dato che Gianluca sta trattando proprio questi aspetti nei suoi articoli! Il primo lo trovi qui: https://www.mathone.it/meccanica-quantistica-1/

P.S. Questa parte storica l’ho tradotta e rielaborata a partire dalla pagina inglese di Wikipedia, che se vuoi più dettagli puoi trovare qui: Wikipedia – Hilbert Spaces

Conclusione

Perfetto, con questa parte storica direi che può dirsi conclusa una prima panoramica su questi strani oggetti, gli spazi di Hilbert. Se hai notato nel corso dell’articolo ho disseminato link per tuoi eventuali approfondimenti, perché come mi piace dire spesso, qui sul blog non abbiamo l’obiettivo di insegnare nulla ma solamente di incuriosire e dare gli strumenti per approfondire 😉

Detto ciò, se può interessarti qui sotto trovi un video davvero molto chiaro sugli spazi vettoriali astratti (è inglese) e il link a un libro di testo in cui si parla anche di questo argomento (più in generale di analisi funzionale) che magari può interessarti. Inoltre ti ricordo che questa è solo la prima puntata di due e tre che farò sugli spazi di Hilbert, quindi ti aspetto per le prossime 😉 !

Il libro che ti voglio suggerirti è un classico dell’analisi funzionale e lo trovi qui: Functional Analysis, Sobolev Spaces and Partial Differential Equations .

Il video invece è questo:

Un viaggio attraverso lo specchio

Lo specchio magico di Lewis Carroll

É intrinseco nell’immaginario umano interpretare lo specchio come confine sottilissimo tra due dimensioni: quella reale e la sua speculare. Il matematico e scrittore Lewis Carroll, pseudonimo di Charles Lutwidge Dodgson, nella sua opera “Alice attraverso lo specchio” invece , offre una differente interpretazione: contrappone il reale al nonsense.

Alice attraversa lo specchio e si trova a sostenere stravaganti dialoghi con animali parlanti e, le numerose disavventure che vive, come la sua deformazione fisica, non sono altro che un cifrato linguaggio matematico. Il folle mondo che la bambina esplora, è rigidamente governato dal libero arbitrio e manca della dimensione temporale tanto che l’orologio segna sempre e solo ”l’ora del tè”! Ogni vicenda nasconde indovinelli e tranelli logico-matematici e riferimenti alla fisica quantistica che solo la mente di un matematico avrebbe potuto ideare.

Nel mondo sottosopra vi sono differenze biologicamente evidenti: ogni molecola esiste in due forme speculari (ad esempio, il destrosio e il levulosio per lo zucchero).
Infatti, prima di attraversare la superficie riflettente, Alice dubita

“forse il latte speculare non sarebbe buono da bere”

Lewis Carrol, “Alice attraverso lo specchio”

ed effettivamente è cosi, anzi, non sarebbe neanche assimilabile!

Dunque, un’apparente lettura per l’infanzia, è in realtà un complesso viaggio attraverso uno specchio magico, per meglio dire, è il racconto di un sogno, che in quanto tale, necessita di considerazioni psicoanalitiche, di cui Freud, filosofo, psichiatra e psicoanalista ne è l’iniziatore.

I neuroni specchio         

Lo specchio continua ad essere soggetto di numerosi studi scientifici nel campo delle neuroscienze.
Nella seconda metà del ‘900 un gruppo di ricercatori dell’Università di Parma, coordinato dal neuroscienziato Giacomo Rizzolatti scoprì i neuroni specchio. Sono cellule nervose che si trovano nel cervello e si attivano quando si osserva una persona fare un’azione o provare emozioni e sentimenti. Tramite l’imitazione, si riesce ad interpretare l’azione dell’altro come fosse la propria e non solo in campo motorio ma anche emotivo. I neuroni specchio perciò permettono la costruzione di profondi legami tra esseri umani, queste particolari cellule sono in grado di cogliere ed interpretare i sentimenti altrui e arricchiscono le esperienze emozionali e cementano i rapporti umani. Alla base di ogni rapporto interpersonale c’è un un meccanismo specchio che offre la possibilità di sviluppare una raffinata sensibilità.

“Dopo l’era dell’homo homini lupus, la scienza ci dice che siamo biologicamente costruiti per stare insieme agli altri.”

“In te mi specchio, per una scienza dell’empatia”, Giacomo Rizzolatti, Antonio Gnoli

Se ti interessa approfondire questo tema, puoi trovare il libro da cui sono state citate queste parole qui, oppure in un altro libro sempre di Rizzolatti:

  1. In te mi specchio, per una scienza dell’empatia
  2. So quel che fai. Il cervello che agisce e i neuroni specchio

Dagli specchi d’Archimede alle centrali solari

Tra il II e III secolo a.C.  Diocle , matematico greco e autore di numerosi trattati di geometria ottica,  nell’opera “Gli specchi ustori”, mette in rilievo la curiosità e l’interesse degli scienziati dell’epoca per lo specchio. Dice:

«Pitia, il geometra scrisse una lettera a Conone per chiedergli come trovare una superficie tale che, posta di fronte al sole, ne rifletta i raggi su una circonferenza. Inoltre quando Zenodoro, l’astronomo, venne da noi, ci chiese come realizzare una simile superficie specchiante tale da concentrare i raggi solari in un solo punto e così produrre fuoco»

“Gli specchi ustori”, Diocle

Narra la legenda che, durante la seconda guerra punica, l’enorme proprietà di produrre fuoco delle “superfici specchianti “ di cui parla Diocle, fu sfruttata da Archimede per difendere Siracusa dagli attacchi, via mare, dei Romani. Si tratta di una “macchina” costituita da superfici specchianti opportunamente orientate tali che i raggi del sole convergessero in un unico punto, bruciando cosi il legno delle navi romane.

Il volto di Archimede è inciso nel recto della medaglia Fields, di cui si parla qui: Medaglia Fields.

Questa vicenda fu tramandata fino ad Alhazen, matematico, fisico, astronomo e medico arabo che cercò di descrivere il cammino di un raggio luminoso che esce da una sorgente e raggiunge un punto obiettivo dopo aver subito una riflessione su una superficie sferica.

Teorema di Alhazen

Fissati una circonferenza $\,\Gamma$, una sorgente $S$ ed un punto obiettivo $B$ (interni alla circonferenza), esistono 2 o 4 raggi uscenti da S che dopo una riflessione sulla curva speculare $\,\Gamma$, raggiungono l’obiettivo B.

Teorema di Alhazen

La dimostrazione di Alhazen rimase però incompiuta. L’importanza di tale questione è evidente poiché, secoli dopo, Leonardo da Vinci affrontò il problema e dopo numerosi fallimenti procedette per via sperimentale. Costruì uno strumento in scala, piuttosto piccolo, che meccanicamente dava soluzione al problema. Nel 1666 Isaac Barrow fornisce un’impostazione geometrica della questione, sfruttando il principio di Erone, per cui la luce si propaga secondo geodetiche di tipo spaziale, cioè percorrendo la minima distanza. Il problema di Alhazen, dunque, si riduce ad un problema di ottimizzazione vincolata, ove il vincolo è rappresentato dalla circonferenza.
Applicando il Teorema dei moltiplicatori di Lagrange si ottiene la cubica che, intersecata con il vincolo, fornisce i punti di Alhazen cioè gli X tali che la distanza d è minima.

$d(x,y) = \overline{SX}+\overline{XB} = \sqrt{(X-X_S)^2+(Y-Y_S)^2}+ \sqrt{(X-X_B)^2+(Y-Y_B)^2} $

$\min_{(x,y)\in\Gamma} d(x,y)$

Tre anni dopo Christiaan Huygens dimostra che i punti di Alhatzen si ottengono con esattezza dall’intersezione tra la circonferenza  e l’iperbole rettangolare trovata sostituendo l’equazione della circonferenza nella cubica sopra sviluppata. Qui il link https://www.desmos.com/calculator/4hjjiyop5f in cui in verde è rappresentata l’equazione cubica di Isaac Barrow, mentre in rosso il luogo geometrico indicato da Huygens.

Tali metodi, permettono esclusivamente la conta dei punti di Alhazen, non la loro individuazione nel piano, tanto che nel 1965 è stato dimostrato che il problema non è risolubile per via geometrica.

É il matematico tedesco Kästner a fornire una dimostrazione analitica che concerne di determinare tali punti, adottando un sistema d riferimento in coordinate polari e sfruttando la legge di riflessione. Di seguito, trovi un video che aveva fatto Davide su ciò che riguarda le proprietà degli specchi e le leggi che regolano il fenomeno della riflessione:

Ghiaccio al sole!

Durante la seconda rivoluzione industriale, le proprietà degli specchi continuano ad interessare scienziati e matematici, i quali muovono i primi passi verso la costruzione di macchine solari. In particolare Mouchot ed il suo allievo Pifre, nel 1878,  in occasione dell’esposizione mondiale a Parigi , espongono la loro macchina solare costituita da uno specchio il cui diametro misurava circa  4 metri ed una caldaia ad esso collegato. Grazie alla luce del sole intrappolata dalla superficie riflettente, si riuscì ad azionare un generatore di vapore collegato ad una macchina che produceva ghiaccio!!! Più tardi Abel Pifre costruì un generatore solare di vapore così efficiente che riuscì, con lo stesso metodo, ad azionare una macchina tipografica con la quale vennero stampate 500 copie del “Giornale del Sole”.

La tecnologia del solare termodinamico

Le passate applicazioni sullo specchio, inteso come concentratore di raggi solari, hanno ispirato il Premio Nobel per la fisica Carlo Rubbia, il quale nel 2001 ha dato vita al “Progetto Archimede”, sviluppando la tecnologia del solare termodinamico.
Anzitutto questa nuova tecnologia porta con se un evidente vantaggio economico: un metro quadro di specchi costa meno rispetto ad un metro quadro di pannelli fotovoltaici. Inoltre, l’efficienza di tale tecnologia sta nel fatto che anche il nostro ecosistema può risentirne i benefici: si riesce a produrre la stessa quantità di energia che si produrrebbe nello stesso tempo in una centrale nucleare o a combustibili fossili. In Sicilia è stata inaugurata la “Centrale Archimede” che si basa, sull’applicazione delle proprietà degli specchi parabolici che fanno si che i raggi del sole vengano proiettati sui tubi in cui scorrono miscele di sali che posso superare anche 550°.

Oggi giorno, il legame tra lo specchio e la luce permettono il funzionamento di torce elettriche, fanali delle auto e addirittura cucine a zero impatto ambientale sono i forni solari. Nei paesi del terzo mondo questo macchinario è utilizzato come un normale forno e effettivamente lo è, sia per tempistiche sia che per modalità di cottura con l’incombenza che gli specchi devono essere orientati verso il sole ogni 15-20 minuti. Un’ultima curiosità: come la tradizione vuole, è uno specchio parabolico ad accendere la fiaccola in occasione di ogni edizione dei Giochi Olimpici.

Finanza: La matematica del denaro (puntata 1)

Qual è il significato di finanza? Quanto è importante una buona educazione finanziaria? Cosa sono gli strumenti finanziari? In questo primo articolo della nuova rubrica a tema di Mathone, tratterò di un argomento che sembra spaventare molti, ma che in realtà può essere compreso da tutti, data la sua costante importanza nella vita quotidiana: questa “indecifrabile” finanza.

Ebbene, essa è semplicemente una scienza che si focalizza sullo scambio di risorse economiche (quali denaro e le sue forme meno liquide, come debiti e crediti) tra individui (finanza personale) , imprese (finanza aziendale) e governi (finanza pubblica o internazionale).  Facile, no? Ma perché è importante?

Premessa: Questo primo articolo ed i prossimi della rubrica sono solamente a scopo informativo, col fine di suscitare ed approfondire l’interesse per questo argomento. Nè io nè gli altri collaboratori siamo investitori/traders professionisti e nessuna cosa che scriviamo ha come obiettivo spingerti ad investire i tuoi soldi. Detto questo, enjoy your reading!

Educazione Finanziaria: cos’è e quanto è importante

Mi piace definire l’educazione finanziaria come consapevolezza economica, intesa come strumento di libertà e scelta. Quante scelte sono autenticamente solo nostre?

Susanna Minghetti, Dirigente Politiche giovanili e programmazione europea.

In quanto tema che condiziona la qualità della vita di ogni persona, ci tengo a sottolineare quanto una buona formazione in ambito finanziariò può concedere benefici e coscienza in scelte che, in dati momenti della nostra vita, influenzeranno radicalmente la propria prosperità futura.

Secondo l’OCSE (Organizzazione per la Cooperazione e lo Sviluppo Economico) l’educazione finanziaria è: “[…] quel processo mediante il quale i consumatori/investitori migliorano le proprie cognizioni riguardo a prodotti, concetti e rischi in campo finanziario e, grazie a informazioni, istruzione e/o consigli imparziali, sviluppano le abilità e la fiducia nei propri mezzi necessarie ad acquisire maggiore consapevolezza delle opportunità e dei rischi finanziari, a fare scelte informate, a sapere dove rivolgersi per assistenza e a prendere altre iniziative efficaci per migliorare il loro benessere finanziario”.

Grazie ad essa, puoi prendere coscienza di te stesso e delle tue aspettative ed attitudini, per affrontare con efficacia e successo molte delle circostanze ed esigenze della vita, con il doppio vantaggio di raggiungere il pieno sviluppo personale ed essere, quindi, nelle condizioni di contribuire concretamente al benessere ed al progresso della tua famiglia, del tuo gruppo di amici e/o colleghi e, in definitiva, della tua comunità. Insomma, ti aiuta ad utilizzare al meglio ciò che riposa nel tuo portafogli e magari anche a fare qualcosa di soldi in più, se vogliamo dirla tutta (però questo dipende esclusivamente da te!).

Ma.. la matematica dov’è?

Che questa piccola introduzione all’argomento ti sia stata d’ispirazione o meno, puoi stare comunque tranquillo: adesso parliamo di numeri. Trattandosi di denaro, potevano mai mancare?

Parliamo proprio di matematica finanziaria, di cui argomenti principali possono essere sinteticamente classificati con due parole chiave: valore e rischio. L’obiettivo è costruire modelli (di cui tratterò nei prossimi articoli) che consentano la misurazione del valore e del rischio di contratti e di aggregati di contratti (chiamati portafogli) finanziari, mirati a distinguere alternative in base alle attitudini ed alle preferenze delle persone, e più in generale che siano utilizzabili per il controllo della sostenibilità economica, fornendo un quadro generale di problemi e soluzioni utili per mantenere un equilibrio nell’economia.

Un esempio di indice del valore è la formula del prezzo di un titolo obbligazionario a cedola nulla (non spaventarti, più avanti spiegherò cosa è):

$ P=\frac{Valore\ Rimborso}{{(1+i)}^t} $

Dove $ P $ è la somma di denaro (€ ad esempio) che viene versata oggi, ad un tasso di interesse $ i $ , per ottenere un dato rimborso tra $ t $ anni.

Infatti se ipotizziamo che il tempo dell’investimento sia $ t=3 $ anni, che il tasso di interesse in questo periodo sia $ i = 12,62\%\ $ e che il rimborso a fine investimento sia $ 100€ $ , il prezzo da pagare per questo titolo all’anno 0 sarà

$ P=\frac{100}{{(1+0,1262)}^3}=70\textrm{€} $

Quindi se oggi acquisto un titolo a $ 70€ $ ad un tasso di interesse del $ 12,62\% $ , tra tre anni riceverò $ 100€ $ .

Uno dei principali strumenti di analisi è il calcolo delle probabilità: con esso si interpretano le situazioni, si costruisce la base dei modelli di valutazione, si definiscono i criteri e le regole di scelta, e fornisce formule per il calcolo dei valori e della rischiosità. Funge da metodo generale per affrontare con criterio situazioni e decisioni in condizioni di incertezza: infatti non solo il calcolo di probabilità ma la statistica in generale fornisce strumenti utili a creare informazione per poter dare miglior base alle scelte (non solo finanziarie, ovviamente).  Visto che siamo in tema, colgo l’occasione per consigliarvi la lettura di questi articoli molto interessanti sulla statistica: Nascita della probabilità , Le variabili aleatorie Il caso esiste? .

A tal proposito è giusto sottolineare uno degli errori più comuni, ovvero la sterilizzazione dell’incertezza (in modelli semplificati per rendere più semplice la comprensione) e, quindi, la rinuncia al calcolo delle probabilità ricorrendo soltanto alla logica, e ciò può condurre a gravi errori nel momento in cui ogni caso non sia analizzato con la giusta considerazione della probabilità attribuita al suo verificarsi. Questo articolo fa ben intuire quanto i processi stocastici siano fondamentali per un giocatore d’azzardo (che possiamo quasi paragonare ad un investitore).

Vi lascio un simpatico spezzone dal film 21 Blackjack dove parla proprio dell’importanza del cambio di probabilità (il famoso paradosso Monty Hall ) :

I principali strumenti finanziari

Cercherò ora di rendere chiara l’idea di cosa e quali siano i principali strumenti finanziari , che probabilmente avrai già sentito nominare quando si parla di borse e di mercati in tv e sui social. Nel corso della rubrica avrò il piacere di analizzarli nello specifico, nelle loro varie sfaccettature e come la matematica funga ancora da strumento principale per governarli.

In modo molto semplice, uno strumento finanziario è un qualsiasi contratto finalizzato al trasferimento di denaro nello spazio. Si distinguono tra di loro per modi, tempi e spazi diversi, di seguito descrivo i più famosi:

I titoli di debito, o titoli obbligazionari, sono strumenti emessi da soggetti in deficit finanziario (detti debitori) che hanno bisogno di finanziamenti (prestiti) sotto forma di denaro. A loro volta questi titoli vengono sottoscritti (comprati) da soggetti in surplus finanziario (detti creditori) che, impiegando il loro denaro, finanziano le esigenze dei debitori aspettandosi in cambio una remunerazione (chiamata, in questo caso, interesse). Questi contratti possono essere emessi dallo stato, e saranno detti titoli di stato, oppure possono essere emessi da imprese, e si chiameranno obbligazioni societarie.

I titoli di debito si distinguono per diverse caratteristiche (durata della vita, struttura ecc.). A seguire due esempi di titoli, uno senza cedola e l’altro con cedola ( qui viene spiegato in breve cosa sono e come funzionano le cedole).

Le due linee temporali qui sopra rappresentano entrambe un periodo di tempo $ t(0;1) $ . La prima a sinistra descrive la vita di un titolo obbligazionario senza cedola, che comprende soltanto il pagamento del prezzo iniziale (col segno – essendo un’uscita di denaro) e la remunerazione finale (col segno + essendo un’entrata di denaro). La seconda invece descrive la vita di un titolo con cedola, che oltre al pagamento iniziale e alla remunerazione finale comprende anche una remunerazione periodica di cedole, che rappresentano l’interesse che il possessore del titolo riceverà nelle così dette date di godimento (frazioni del periodo $ t(0,1) $ ).

Le azioni, o titoli azionari, rappresentano un modo per “acquistare” una piccola parte di una società, partecipando quindi al capitale della stessa, acquisendone anche i rischi. Ogni azione rappresenta un’uguale frazione del capitale, perciò tutte le azioni hanno valore uguale.

Esempio: La società Mathone presenta un capitale sociale di $2\ 000\ 000$ di euro (è sempre un esempio eh!). Decide di immettere nel mercato un numero di azioni pari ad $1\ 000\ 000$, di cui valore è di $2 €$ per azione.

Chi possedesse $10\ 000$ azioni deterrebbe

$ 10\ 000 \times \ 2€ = 20\ 000€ $ di capitale, ovvero

$ (\frac{20\ 000}{2\ 000\ 000})\ \times \ 100\ =\ 1\%\ $ del capitale sociale di Mathone.

Le azioni sono considerate più rischiose delle obbligazioni, per una serie di motivi. Le prime dipendono dal benessere di una società, mentre le seconde hanno pieno diritto di rimborso , anche nel caso in cui la società vada male. Inoltre, se la società fallisce, gli obbligazionisti saranno rimborsati con quanto rimane del capitale, gli azionisti no. Ma d’altra parte, dove c’è più rischio c’è anche più rendimento, il che solitamente garantisce alle azioni un guadagno nettamente maggiore.

Infine, i derivati sono particolari contratti a termine, il cui valore dipende (deriva) dall’andamento del prezzo di una o più attività sottostanti.

Il sottostante quindi è una variabile oggetto degli strumenti derivati e può avere natura reale (merci, materie prime) o finanziaria (azioni, titoli, indici finanziari ecc.). Inoltre, Il venditore del contratto non deve necessariamente possedere il sottostante. Figo no? Ciò permette copertura di rischi praticamente ovunque, rendendo i derivati contratti da avere obbligatoriamente nel proprio portafoglio finanziario.

Esistono varie categorie di derivati, descriverò in breve solo le principali : futures, swap, opzioni.

  • Nei forward le due controparti si accordano per scambiarsi una certa quantità di un sottostante ad una data futura, ma ad un prezzo stabilito prima. Chi acquista è detto in “posizione lunga” (long position) mentre chi vende è in “posizione corta” (short position).
  • Gli swap sono contratti dove le due controparti decidono di scambiarsi somme di denaro (o meglio la differenza tra queste ultime) in base a delle variabili (tasso di interesse, valute diverse) specificate nel contratto stesso.
  • Le opzioni conferiscono al possessore il diritto, ma non l’obbligo (perciò “opzione”), di acquistare o vendere il sottostante ad una data e ad un prezzo stabiliti. La differenza fondamentale delle opzioni rispetto agli altri derivati consiste nei diritti del possessore: egli non è obbligato ad acquistare o vendere il sottostante, ma può farlo se esercitando l’opzione ne trae un’effettiva convenienza.

Per questo primo articolo è tutto, se hai domande o vorresti proporre qualche argomento che ti suscita curiosità, c’è la sezione commenti apposta. Nei prossimi articoli entrerò più nello specifico , analizzando vari aspetti e curiosità del mondo della finanza, perciò stay tuned!

Il triangolo di Tartaglia: smemorati per scelta

Sicuramente alle scuole superiori avrai studiato qualcosa riguardo l’algebra dei binomi, tipico è il quadrato di un binomio: $(a+b)^2=a^2+b^2$. Ovviamente no! Manca un termine molto importante: $2ab$.

Presa da Reddit


In questo articolo cercheremo di capire il motivo per cui questo termine è lì. Inoltre generalizzeremo il risultato per la potenza ennesima di un binomio. Per questa generalizzazione ci verrà in aiuto il Triangolo di Tartaglia 😉


Il caso $(a+b)^2$ è molto semplice, infatti per la proprietà distributiva del prodotto:
$ (a+b)(a+b)=a^2+ab+ab+b^2=a^2+2ab+b^2 $

Analogamente,
$ (a+b)^3=(a+b)^2(a+b)=(a^2+2ab+b^2)(a+b)=a^3+3a^2b+3ab^2+b^3$
Tuttavia man mano che l’esponente aumenta diventa davvero laborioso svolgere tutti i conti, per questo sarebbe molto comodo trovare un metodo più veloce.

Notiamo che ogni addendo del risultato è costituito da due parti: una è il coefficiente, indipendente da $a$ e $b$, l’altra la chiameremo “combinazione”, in quanto è una combinazione di $a$ e $b$, elevati ad un appropriato esponente.

E’ abbastanza facile ricordare come si costruiscono le combinazioni: in un binomio $(a+b)^n$ si parte da $a^nb^0$ e poi si prosegue diminuendo di 1 l’esponente di $a$ e aumentando di 1 quello di $b$, fino ad arrivare alla combinazione simmetrica: $a^0b^n$. Il problema principale è quindi quello di ricordare i coefficienti da mettere davanti ai vari addendi.
Fortunatamente ci viene in soccorso un matematico italiano: Niccolò Fontana. Questo nome ti suona nuovo? Probabilmente lo conosci con il suo soprannome: Tartaglia!


Il soprannome deriva dalla sua balbuzie, sviluppata in seguito ad uno spiacevole incontro con dei briganti avuto a soli 13 anni e che gli causò un trauma cranico. Nonostante gli sia stato attribuito come presa in giro, egli stesso decise di farne un simbolo, utilizzandolo come firma per le sue opere. Oggi ci occupiamo della più celebre: il Triangolo di Tartaglia (conosciuto come Triangolo di Pascal all’estero).

Devi sapere che nel mondo della matematica l’Italia ha svolto e sta svolgendo un ruolo molto importante, non solo con Tartaglia ma anche con altri matematici. Per esempio abbiamo ricevuto 2 Medaglie Fields per meriti matematici, se ti interessa sapere cosa sono leggi questo articolo: Medaglia Fields.

Costruzione del Triangolo di Tartaglia

La costruzione è molto semplice: per prima cosa si numerano le righe a partire da 0 (il motivo sarà chiaro in seguito), poi si dispone una serie di 1: il primo a fare da vertice; gli altri, due per riga, lungo i lati obliqui di un triangolo isoscele (quindi ai due estremi di ogni riga). Infine per riempire la parte centrale è sufficiente ricordare che ogni termine è dato dalla somma dei due valori immediatamente sopra di esso. Per esempio alla riga 2 c’è un 2, ottenuto dalla somma di due 1, mentre i due 10 alla riga 5 derivano dalle somme di 4 e  6 alla riga superiore.

Perchè il Triangolo di Pascal è utile?

Tartaglia fa uso del suo triangolo per problemi di combinatoria, tuttavia esso è anche molto utile per svolgere la potenza di un binomio. In effetti le due cose sono strettamente collegate, ma lo vedremo in seguito.
Per il momento osserviamo solo che i numeri alle righe 2 e 3 sono rispettivamente i coefficienti dei termini di $(a+b)^2$ e $(a+b)^3$. Si può dimostrare che questo vale per ogni riga! Per esempio i coefficienti di $(a+b)^5$ sono i numeri che compaiono alla quinta riga del triangolo. Quindi,
$(a+b)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5$
Molto più veloce rispetto a svolgere manualmente tutti i conti.

Ora risulta chiaro perché abbiamo iniziato a numerare le righe da 0. Infatti $(a+b)^0=1$ mentre $(a+b)^1=1a^1+1b^1$.

Bene, abbiamo visto come il Triangolo di Tartaglia ci può aiutare nello sviluppo di un binomio. Ora soffermiamoci su un caso pratico molto semplice in cui saper svolgere il quadrato o il cubo di un binomio può essere utile.

Fate finta di dover calcolare per qualche motivo $106^2$ e di non avere la calcolatrice a portata di mano. In questo caso è comodo scrivere $106^2=(100+6)^2$ ed applicare il metodo di Tartaglia, quindi il risultato sarà
$100^2+2\cdot 6\cdot 100+6^2=11236$

Oppure, per esempio:
$(63^3)=(60+3)^3=60^3+3\cdot 60^2\cdot 3+3\cdot 60\cdot 3^2+3^3=216000+32400+1620+27=250047$ .


Abbastanza laborioso, ma ci si deve accontentare, è comunque più veloce rispetto a svolgere tutti i calcoli in colonna!

Coefficienti binomiali

Abbiamo detto che Tartaglia fa ampio uso del suo triangolo soprattutto nel campo del calcolo combinatorio; perché le due cose sono legate?
Ragioniamo sul significato dei coefficienti, aiutandoci con un esempio: $(a+b)^3$ . Ci chiediamo, senza svolgere i calcoli, quanti siano i termini con combinazione $a^2b$

La figura mostra il motivo per cui il risultato è 3. Le terne che moltiplicate danno come combinazione $a^2b$ sono infatti $(a,a,b) ; (a,b,a) ; (b,a,a)$ , rispettivamente riquadrate in rosso, blu e verde.

Andiamo in profondità, qual è il significato della domanda che ci siamo posti? Quello che abbiamo fatto è stato fissare una terna: $(a,a,b)$, e andare a contare in quanti modi questa terna può disporsi.
Per calcolare questo risultato basta osservare quante possibilità abbiamo per la prima posizione (3), per la seconda (2) e per la terza (1). Quindi in tutto si hanno $3\cdot 2\cdot 1=6$ possibilità. Però i due termini $a$ sono indistinguibili, di conseguenza dobbiamo anche dividere per il numero di possibili disposizioni delle $a$, in questo caso 2.

Riassumendo l’operazione che ci consente di contare le combinazioni possibili è la seguente:

$\frac{3\cdot 2\cdot 1}{2}=\frac{3!}{2!1!}=\binom{3}{1}$

Questa espressione è detta, guarda caso, coefficiente binomiale e in generale si calcola così

$\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Ogni termine del triangolo di Tartaglia è proprio il coefficiente binomiale di n k dove n è la riga e k la colonna  (partendo da 0), per esempio il 10 è alla riga riga 5 e alla colonna 2, infatti si ottiene calcolando

$\binom{5} {2}=\frac{5!}{2!3!}=10$

Binomio di Newton

In questo modo possiamo scrivere in forma compatta la potenza di un binomio:

$(a+b)^n=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$

Questa formula è il celebre binomio di Newton. Essa è fondamentale in combinatoria, ma ha applicazioni anche in altre branche della matematica

Per esempio in questo articolo Georg Cantor: Quanto è infinito l’infinito? Lorenzo spiega come Cantor abbia dimostrato che l’insieme delle parti di un insieme ha una cardinalità maggiore rispetto alla cardinalità dell’insieme stesso.
Nel caso di insiemi finiti (ovvero costituiti da un numero n di elementi), la cardinalità è esattamente $2^n$, vediamo come provarlo utilizzando la formula di Newton.

Noi sappiamo che $card(X)=n$. L’insieme delle parti di X è l’insieme costituito da tutti i sottoinsiemi di X. Quindi per contare i suoi elementi possiamo per prima cosa contare il numero di sottoinsiemi di X con 0 elementi, poi quelli con 1 elemento e così via, fino a quelli di n elementi. Infine, per trovare il numero totale sarà sufficiente sommare i conteggi parziali.
Ricordando il significato di coefficiente binomiale, il numero di sottoinsiemi con 0 elementi sarà $N_0 =\binom{n}{0}$, con 1 elemento $N_1=\binom{n}{1}$ e così via fino a $N_n=\binom{n}{n}$.
Quindi sommando abbiamo che $card(\mathcal{P}(X))=\sum_{k}^{n} \binom{n}{k}= \sum_{k}^{n} \binom{n}{k}1^{n-k}1^k$ ovvero lo sviluppo con il binomio di Newton di $(1+1)^n=2^n$.

Se ti interessa approfondire questo argomento o qualche altro risultato di Tartaglia ti lascio qualche link interessante qui sotto: