La scommessa più disastrosa (e importante) della storia

La scommessa più disastrosa (e importante) della storia
Tempo di lettura: 3 minuti

Questa storia ha inizio nel 1684 quando tre uomini si incontrarono in un caffè a Londra.

Questi erano tre accademici e amici, ognuno dei quali aveva una reputazione che li anticipava: Edmond Halley, il poliedrico Robert Hooke e il rinomato architetto Sir Christopher Wren (nell’immagine sopra, da sinistra a destra).

Impegnandosi in vivaci conversazioni sui recenti sviluppi scientifici, la loro attenzione si spostò presto su un argomento che era stato a lungo fonte di mistero e intrighi nella comunità scientifica: i movimenti degli oggetti celesti.
All’epoca si sapeva che i pianeti viaggiavano in orbite ellittiche attorno al Sole. In realtà, questo era stato stabilito meno di un secolo prima dall’astronomo Johannes Kepler (italianizzato Keplero), attraverso la prima delle tre leggi riguardanti il ​​moto planetario.
Ma le leggi di Keplero erano basate sull’analisi dei dati empirici, senza una teoria matematica generale a sostegno dei risultati. In sostanza, si sapeva che i pianeti viaggiavano su orbite ellittiche, ma perché? Questo era ciò che incuriosì i tre uomini.
E così, avvenne che quel giorno fu fatta una scommessa memorabile: Wren offrì un premio di quaranta scellini all’uomo che avesse fornito un’elegante soluzione al problema.


Hooke, che si dice fosse una figura piuttosto litigiosa, si affrettò ad affermare di avere già la soluzione. Ma scelse di tenerla per sé, promettendo di rivelarlo solo quando gli altri avessero ammesso la sconfitta. È improbabile che avesse davvero una soluzione, poiché non ne avrebbe potuta produrre una al volo. Ma quello che si può dire è che la scommessa fatta in questo giorno, anche se seminale, si sarebbe rivelata piuttosto catastrofica per un uomo: Edmond Halley.


Halley si ossessionò al problema nei mesi successivi. Sebbene incerto sulla soluzione, era sicuro che la chiave fosse qualcosa chiamata “legge del quadrato inverso”.
Sin dai tempi di Keplero, si pensava che ci fosse una sorta di forza attrattiva che manteneva i pianeti in orbita attorno al Sole. Nello specifico, si credeva che questa forza fosse inversamente proporzionale al quadrato della distanza tra loro; Keplero aveva detto altrettanto nella sua seconda e terza legge planetaria.
Per Halley, la domanda era meno sul motivo per cui i pianeti viaggiassero in orbite ellittiche, ma piuttosto su quale sarebbe la forma dell’orbita di un pianeta se la legge del quadrato inverso fosse stata mantenuta. Ma non sapeva come procedere da lì.
Così, nell’estate di quell’anno, si recò a Cambridge per chiedere aiuto al professore di matematica lucasiano dell’università: l’unico e solo Isaac Newton.

Con sorpresa e gioia di Halley, Newton aveva già risolto il problema: la forma dell’orbita era infatti un’ellisse!
Ma quando Halley chiese se poteva mostrare i suoi calcoli, Newton non potè mostrare il documento. Tuttavia, su richiesta di Halley, promise di rifare il lavoro e mostrarglielo.
In effetti, Newton non solo mantenne la sua promessa, ma andò ben oltre. Da tempo pensava ai principi del movimento sin dai tempi in cui studiava all’università e la richiesta di Halley lo spinse a consolidare tutto il lavoro che aveva svolto negli ultimi vent’anni. E, dopo diciotto estenuanti mesi, il testo rivoluzionario era finito.
Si chiamava Philosophia Naturalis Principia Mathematica, che si traduce in Principi matematici della filosofia naturale. Al giorno d’oggi, è semplicemente noto come Principia.
Questo testo conteneva tutto il lavoro di Newton sulla cinematica, dalle tre leggi del moto alla legge universale di gravitazione. La ricerca di Halley di una spiegazione matematica sottostante per il moto planetario non era stata vana; tuttavia, non fu senza costi da parte sua.

Da un lato, Newton aveva scelto di pubblicare il suo lavoro in tre volumi, ma dopo che scoppiò una disputa tra lui e Hooke, si rifiutò di pubblicare il terzo, che era un pezzo fondamentale per la comprensione dei primi due. Solo con molta diplomazia e adulazione da parte di Halley venne alla luce il volume finale. Anche la pubblicazione del libro stesso divenne difficile. Halley inizialmente si era assicurato la promessa della Royal Society di farlo, ma alla fine rinnegarono. L’anno prima avevano sponsorizzato la pubblicazione di The History of Fishes, che si rivelò un immenso flop.

Dopo questo fiasco, i membri della società non erano propensi all’idea di rischiare le proprie finanze su un trattato di matematica. Così, Halley fece il generoso sforzo di pagare la sua pubblicazione con il proprio stipendio, mentre Newton come al solito non contribuì. A peggiorare le cose, Halley ricevette subito dopo la notizia che la Società, sotto la quale lavorava, non poteva più permettersi di pagare il suo stipendio annuale di cinquanta sterline. Invece, sarebbe stato pagato in copie di The History of Fishes.


In retrospettiva, la scommessa di Wren si rivelò piuttosto dannosa per Halley. Per il prezzo di quaranta scellini, aveva scommesso la sua carriera, reputazione e stipendio per assicurarsi che il lavoro di Newton venisse alla luce.
Ma le implicazioni furono senza dubbio gloriose. I Principia non si limitavano a spiegare il moto dei corpi planetari; spiegava tutto, dal movimento delle maree alla traiettoria di una palla lanciata in aria. Le sue pagine iniziali sono giustamente considerate l’inizio della scienza moderna, poiché Newton creò magistralmente una solida comprensione di come il nostro universo operasse in termini di movimento.
Fu sicuramente una scommessa catastrofica per Edmond Halley, ma senza dubbio decisiva per la rivoluzione scientifica!

Crediti per la storia: Bill Bryson, Breve storia di (quasi) tutto

Nota: Questo articolo è stato preso dalla risposta di Quora: https://it.quora.com/Qual-è-stata-la-scommessa-più-catastrofica-mai-presa/answer/Erik-Pillon

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.