Fisica matematica: cos’è e molte risorse per approfondirla

Cos’è la fisica matematica? Se non hai mai studiato matematica probabilmente non ne hai mai sentito parlare e non ti è chiaro dove possa concludersi la fisica e iniziare la matematica, o viceversa. Quindi questo articolo vuole aiutarti ad avventurarti in questo mondo che ho scoperto un paio d’anni fa e mi sta piacendo sempre di più, non si sa mai che con questo articolo ti venga voglia di scaricarti una delle dispense che ti suggerisco o comprarti uno dei libri elencati per approfondirla da solo 🙂 Dopotutto con gli articoli sul blog non miriamo ad insegnare nulla, ma ad incuriosire e dare gli strumenti per successivi approfondimenti personali! Ma bando alle ciance…iniziamo!

Ah dimenticavo…se non lo sai ho anche un canale Youtube e la fisica matematica sarà senz’altro uno dei miei principali interessi nei video. Se non sei ancora iscritto lo trovi qui: CANALE YOUTUBE MATHONE.

Fisica matematica

Cos’è la fisica matematica?

Per iniziare questo paragrafo ti riporto la definizione di fisica matematica che puoi trovare anche su Wikipedia perchè mi sembra molto chiara ed un ottimo punto di partenza:

La fisica matematica è quella disciplina scientifica che si occupa delle “applicazioni della matematica ai problemi della fisica e dello sviluppo di metodi matematici adatti alla formulazione di teorie fisiche e alle relative applicazioni“.

Wikipedia

Vediamo un po’ di analizzare quanto scritto qui sopra. Partendo da cosa sia la fisica si può capire abbastanza semplicemente la definizione qui sopra. Infatti fisica vuol dire, anche in termini di origini della parola, “natura” o “le cose naturali”. È quindi la branca della scienza che si occupa letteralmente di studiare i fenomeni naturali, utilizzando un formalismo matematico e degli strumenti forniti dalla matematica.

Prima di proseguire, ci tengo a dirti che se vuoi vedere il video che ho fatto su questo argomento lo trovi qui:

Questi fenomeni naturali vengono quindi osservati, misurati e poi analizzati grazie a vari strumenti matematici. L’obiettivo ultimo della fisica è quello di costruire delle relazioni tra i fenomeni naturali (dei legami astratti) e quindi essere in grado di prevedere alcuni risultati a partire da delle misurazioni concretamente effettuabili.

Bene, se ci hai fatto caso, nelle righe qui sopra ho evidenziato in grassetto i termini “forniti dalla matematica”. È proprio qui che possiamo infatti far ricadere la linea di delimitazione tra fisica matematica e fisica. Chi si occupa di fisica matematica ha sostanzialmente l’obiettivo di fornire gli strumenti, i formalismi, i metodi che poi possono essere applicati dai fisici (in genere) per analizzare un particolare fenomeno naturale.

Da un punto di vista storico, possiamo trovare la motivazione che ha portato all’interesse per la fisica matematica già dalle parole di Galileo:

Il mondo naturale va descritto con il suo linguaggio, e questo linguaggio è la matematica.

Galileo Galilei

Quindi, in parole povere, possiamo dire che la differenza tra la fisica matematica e la fisica teorica sta nella particolare attenzione che la prima pone verso il formalismo tipico della matematica per descrivere fenomeni fisici, mentre la seconda ha il chiaro obiettivo, prima o dopo, di andare a relazionarsi con la fisica sperimentale e quindi, il reale mondo osservabile.

Differenti scale studiate dalla fisica matematica

Questa sezione è parecchio importante perchè permette un po’ di classificare i vari settori della fisica matematica in base al loro oggetto di studio. Più precisamente questa classificazione sarà basata sulla “grandezza” della scala analizzata da questi rami di studio.

Vediamo un esempio che ci permette di analizzare questo molto chiaramente:

Supponi di voler descrivere come si muove un gruppo di 2 palline che, partendo da punti diversi di un tavolo da biliardo, vengono lanciate verso il centro del tavolo così da interagire l’una con l’altra.

Bene, in questo caso la dinamica si può studiare a livello microscopico, ovvero analizzando con un’equazione differenziale ordinaria la dinamica di ogni pallina, andando quindi ad ottenere un sistema di 2 equazioni, basate fondamentalmente sulla legge di Newton, chiaramente non semplici ma sempre 2 equazioni ordinarie sono. Infatti in questo caso il numero degli oggetti coinvolti è basso, per cui non è eccessivamente costoso descrivere singolarmente le dinamiche delle singole particelle.

Ecco quindi vista la parte della fisica matematica che si occupa delle scale MICROSCOPICHE. Qui ricade la meccanica razionale, che coinvolge in maniera pesante l’analisi dei sistemi dinamici ed è la parte della fisica matematica a cui mi sto appassionando maggiormente.

Andiamo ad aumentare il numero degli oggetti coinvolti.

Supponiamo di avere 150 persone, chiuse all’interno di una stanza, che al momento di un incendio devono evacquare la stanza. Capisci bene che in questo caso descrivere la dinamica di ogni singola persona sarebbe troppo costoso, infatti si dovrebbero tenere in considerazione troppi dettagli, troppe interazioni, troppe equazioni. Avremo come minimo 150 equazioni ordinarie se seguissimo un approccio microscopico, tutte vincolate a certi fattori quali “la consapevolezza che l’individuo ha di dove sia l’uscita di sicurezza” o “quanto spaventato è il soggetto” e cose del genere, non semplice nemmeno da risolvere in termini di costi computazionali una volta “messo giù” il sistema.

Ecco quindi che qui si può decidere di coinvolgere un approccio che lavora ad una scala superiore, l’approccio CINETICO o meglio l’approccio che si dedica all’analisi dei fenomeni su scala MACROSCOPICA.

In quel caso, non ci si interessa del variare della posizione allo scorrere del tempo del singolo individuo, ma si analizza la densità di probabilità associata all’evento che gli individui si trovino in una certa zona ad un certo istante temporale.

Quindi si iniziano a trattare tutte insieme le persone come una sola cosa, avremo quindi delle equazioni cinetiche che coinvolgono le variabili di velocità, posizione e densità di probabilità. Meno equazioni ma più “legate” l’una all’altra.

Se ti interessa questa classe di problemi ti consiglio di andarti a leggere qualcosa sul problema di evacquazione, sulla dinamica degli stormi di uccelli o anche sull’equazione di Vlasov Poisson di cui sto ascoltando alcune lezioni qui a Nizza, la trovi qui: https://en.wikipedia.org/wiki/Vlasov_equation .

Passiamo quindi all’ultima, ma non meno importante, scala di analisi dei problemi della fisica matematica. La scala MESOSCOPICA. In questo caso si passa dalle equazioni cinetiche alle equazioni alle derivate parziali (PDE). Lo studio di questa classe di fenomeni è basata sul vedere gli oggetti coinvolti nella dinamica come un fluido continuo.

Ti faccio un esempio. Supponi di avere un’autostrada ad una sola corsia in cui la frequenza di macchine che passano da una certa posizione è così alta da poter approssimare la sequenza di macchine come un fiumiciattolo e descrivere lo scorrere delle macchine come la variazione di densità, in spazio e tempo, del fluido. Per esempio in questo caso si parla di equazione di Burgers $\partial_t u +\partial_x(u^2/2)=0$ ma le equazioni alle derivate parziali che si possono generare sono veramente infinite.

Per esempio si può far ricadere in questa macro area della fisica matematica lo studio matematico della dinamica dei fluidi, della turbolenza, delle onde sonore e molto altro ancora.

Risorse e libri di testo consigliati per iniziare a studiarla

Eccoci finalmente alla sezione che ritengo più utile dell’articolo 🙂 Fortunatamente infatti si possono trovare molti libri e dispense ben fatte riguardo a questi temi. Chiaramente la fisica matematica è un settore ampissimo perché si interessa dei più svariati fenomeni e delle più svariate scale.

Di alcuni di questi settori so poco o nulla, per cui mi limito ad elencarti qui sotto risorse per approfondire temi che ho avuto modo di studiare personalmente in maniera più o meno avanzata. Quindi settori come la teoria spettrale per la meccanica quantistica o altri non te li riporto perché ho avuto modo di studiarli in parte ma poco rivolti alla fisica, più come uno strumento generale della matematica poi eventualmente utilizzabile per la fisica, quindi preferisco evitare.

Delle scale di cui ti ho parlato qui sopra andremo a vedere qualche risorsa riguardante i fenomeni della dinamica (rivedendo quindi in maniera più formale e rigorosa, alla luce della geometria differenziale, la meccanica classica), qualche riferimento a testi riguardanti le PDE iperboliche e i modelli matematici per le PDE della fisica in generale. Ovviamente è molto restrittivo come panorama, ma preferisco evitare di suggerirti cose che non ho studiato personalmente almeno in parte.

Sistemi dinamici e meccanica razionale

Questo è il settore che preferisco tra quelli che ti ho nominato, è molto ampio, molto visivo nelle tecniche utilizzate e spesso tratta più o meno direttamente di fenomeni che puoi vedere tranquillamente nella vita quotidiana. Di suggerimenti da darti ne avrei quindi molti ma mi limito a fornirti qualcosa di ben mirato. Partiamo dai sistemi dinamici per i quali ti lascio una playlist di video (in inglese ma fatti da un italiano 😉 ) su Youtube che è davvero chiara:

Questo è solo il primo video del corso, se clicchi sul titolo poi ti si apriranno anche le successive lezioni

Se preferisci studiare su dei libri o delle dispense eccoti accontentato/a:

  1. Introduzione all’Analisi Qualitativa dei Sistemi Dinamici Discreti e Continui (qui si punta molto sulle tecniche qualitative del ritratto di fase, che permettono di ottenere molte informazioni sul sistema in analisi senza risolvere l’equazione che lo descrive, come spesso necessario…uno dei due autori è stato mio professore di Dinamica dei Fluidi 😉 ).
  2. Una passeggiata tra i sistemi dinamici (Dispensa di Giancarlo Benettin per l’università di Padova, ho avuto modo di usarla parecchio in questi 2-3 anni)

Purtroppo non posso lasciarti la dispensa da cui ho studiato al mio corso di sistemi dinamici perché è protetta da password e preferisco evitare casini 🙂

L’analisi qualitativa, che puoi apprendere qui sopra in maniera più o meno approfondita, diventa poi fondamentale se vuoi spostarti sull’approccio newtoniano, lagrangiano o hamiltoniano verso la dinamica classica. Per studiare questi approcci ecco le risorse che mi sento di suggerirti:

  1. Dispense per il corso di Istituzioni di Fisica Matematica – prof. F. Fassò : queste ho avuto modo di consultarle parecchio quest’anno per preparare l’esame di Meccanica Analitica
  2. Questa dispensa invece non l’ho mai consultata ma mi sembra ben fatta e tratta del formalismo Hamiltoniano: Dispensa UniMi
  3. Per studiare questi temi spesso è necessario utilizzare concetti e strumenti della geometria differenziale, di libri a riguardo ce ne sono tanti ma ultimamente mi sto trovando a guardare spesso questo libro in cui si utilizzano molti esempi e rappresentazioni grafiche per cui te lo consiglio: A Visual Introduction to Differential Forms and Calculus on Manifolds.

Equazioni alle derivate parziali della fisica matematica

Come abbiamo visto nei paragrafi precedenti, non sempre per parlare di fisica matematica è sufficiente coinvolgere equazioni differenziali ordinarie, come per la meccanica razionale, spesso per analizzare la dinamica dei continui, vibrazioni, fluidi e molto altro sono necessarie equazioni alle derivate parziali. Questo è un mondo ampissimo, quindi è dura dare suggerimenti anche perché ho avuto modo di studiarle sotto vari aspetti ma chiaramente non so nulla in confronto a tutto ciò che è stato scoperto fino ad ora.

Ti do però qualche suggerimento riguardo a testi scorrevoli e che potrebbe interessarti studiare o sfogliare. Parto da un suggerimento che mi aveva dato il buon Erik ormai un anno fa, è un libro molto piacevole da leggere e consultare, in cui si parla dei modelli matematici della fisica, si analizzano le varie procedure per ricavarli e si studiano poi le equazioni ottenute da un punto di vista delle loro proprietà ed eventuali tecniche risolutive. In questo libro si spazia in tutte le principali classi di PDEs (Partial Differential Equations), guardando equazioni ellittiche, paraboliche, iperboliche e tutto ciò che ci sta intorno.

E’ in italiano ed il titolo è Equazioni a derivate parziali: Metodi, modelli e applicazioni.

Passiamo poi al classicone di questo campo di studi, non è di sicuro un testo leggero e semplice dato che generalizza, quando possibile, ad $\mathbb{R}^d$ mentre per farsi un’idea di ciò che si sta parlando spesso è utile ragionare direttamente in $\mathbb{R}^2$ per poter rappresentare quanto letto, ma comunque sto parlando dell’Evans, il libro è: Partial Differential Equations.

Tanto per dire 😉

Come per le equazioni differenziali ordinarie è raro poter risolvere analiticamente una PDE, per cui ti lascio anche un testo, in italiano, con cui mi sono trovato bene e si parla di risoluzione numerica di PDE: Modellistica Numerica per Problemi Differenziali.

Dopo chiaramente di testi da suggerire ce ne sarebbero molti altri, magari più specifici per un particolare settore o più rivolti alla modellizzazione matematica. Per questa tipologia di argomenti onestamente non mi sono mai trovato particolarmente bene con le dispense ma ho sempre preferito i libri, se proprio dovessi trovarne una, che però riguarda “solo” le equazioni e i sistemi di equazioni iperboliche, da cui ho studiato per preparare un esame in Erasmus è: Hyperbolic Conservation Laws An Illustrated Tutorial .

Sono consapevole che i libri e le dispense suggerite in queste ultime righe sono costosi e difficili, però per vedere questa tipologia di argomenti lo sforzo richiesto è parecchio alto. In realtà anche per la meccanica razionale e i sistemi dinamici lo sforzo è molto alto però per iniziare a studiarle, avendo usato delle dispense universitarie, sono riuscito a suggerirti qualche risorsa più passo a passo/introduttiva. Qui invece non ho mai trovato nulla onestamente.

Bene, spero che questo articolo introduttivo alla fisica matematica ti sia piaciuto. Ti anticipo che la lista delle risorse per approfondire questi temi la amplierò mano a mano che studierò cose nuove (e ne studierò parecchie anche solo per la tesi), inoltre questo è solo l’inizio. Infatti più avanti farò molti articoli e video dedicati a questi temi, magari più specializzati su un esempio, su un’equazione o un modello. Se ti piace come tema dimmelo con un commento qui sotto e se hai suggerimenti di ogni genere fammi sapere 🙂

Cosa ne pensi dell'articolo?

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.