La matematica conta: storia dei primi numeri

La matematica conta: storia dei primi numeri
Tempo di lettura: 4 minuti

Leggere, scrivere e contare sono tra le attività più importanti che la nostra mente riesce a svolgere e costituiscono la base dello sviluppo umano. In questo articolo analizzeremo l’operazione di contare e il concetto strettemente legato di numero naturale. Mentre lettura e scrittura sono invenzioni relativamente recenti, diffuse a partire dal 3000 a.C. l’usanza del contare ha radici molto più antiche.

Contare

Perchè gli uomini hanno iniziato a contare?

Le prime tracce di conteggi risalgono addirittura al paleolitico. I principali reperti che testimoniano questa capacità sono un osso di lupo risalente al 40000 a.C e il cosiddettoOsso di Ishago

Osso di Ishago

Ma che cosa contavano gli uomini nella preistoria? Non è difficile immaginare quali possano essere le utilità di un tale strumento: per un cacciatore era fondamentale sapere quante lance avesse a disposizione, mentre un raccoglitore era interessato a sapere quanti frutti era stato in grado di trovare in una giornata.
In seguito, con la diffusione dell’agricoltura e dell’allevamento, divenne ancora più importante saper contare: un pastore deve conoscere esattamente la quantità di pecore nel suo gregge, altrimenti rischia di dimenticarne qualcuna! Ah di pecore e numeri naturali ne avevamo parlato anche qui
Numeri Naturali: dalle pecore al concetto di numero 😉 .

Piccole e grandi quantità

Nonostante il contare abbia risposto originariamente a problemi pratici, si tratta di un’operazione astratta e tutt’altro che naturale. Essa non va confusa con la capacità di distinguere piccole quantità di oggetti; per comprendere la differenza è sufficiente un rapido esperimento.
Quanti oggetti contengono i seguenti gruppi?

Ovviamente è molto semplice distinguere le differenze, senza la necessità di mettersi effettivamente a contare quante figure sono presenti in ogni insieme.
Questo però funziona solo con piccole quantità: prova a valutare il numero degli oggetti nei seguenti insiemi:

In questo caso è stato certamente più difficile capire il numero “a colpo d’occhio” e probabilmente sarà stato necessario contare le forme a piccoli gruppi di due o tre elementi per avere la certezza del numero totale.

Mentre la capacità di contare sembra essere prerogativa umana, la distinzione tra piccoli gruppi di oggetti è diffusa anche in alcuni animali, soprattutto uccelli. A questo proposito è interessante riportare un racconto risalente al Settecento.

Corvo e matematica
I corvi sanno contare

Il corvo conta fino a 5

Un contadino voleva uccidere un corvo che aveva nidificato in cima a una torre, dentro ai suoi poderi. Ogni volta che si avvicinava, però, l’uccello volava via, fuori dalla portata del suo fucile, finché il contadino non si allontanava. Solo allora l’animale ritornava nella torre, riprendendo le incursioni sui terreni dell’uomo. Il contadino pensò allora di chiedere aiuto a un suo vicino. I due, armati, entrarono insieme nella torre e poco dopo ne uscì soltanto uno. Il corvo però non si lasciò ingannare, e non ritornò al nido finché non fu uscito anche il secondo contadino. Per riuscire ad ingannarlo entrarono poi tre uomini e successivamente quattro e cinque. Ma il corvo ogni volta aspettava che fossero usciti tutti prima di far ritorno al nido. Soltanto in sei finalmente, i contadini ebbero la meglio, infatti il corvo aspettò che cinque di loro fossero usciti e quindi fiducioso rientrò sulla torre, dove il sesto contadino lo uccise.

Stimolati da questo racconto, diversi studiosi si sono interessati dell’effettiva capacità di conto di alcuni animali, in particolare l’etologo tedesco Otto Koehler dimostrò con una serie di esperimenti che il suo corvo, Jacob era in grado di contare fino a 6, quindi al contadino per stanarlo sarebbe servita una persona in più rispetto a quelle del racconto!

Terzetti e numeri naturali

É giunto il momento di interrogarci sul vero significato del contare. Fino ad ora abbiamo dato per scontato un legame tra il processo di conteggio e i numeri naturali. Essi sono talmente basilari che raramente ci soffermiamo sul loro reale significato.


L’idea, apparentemente banale, che sta alla base dei numeri naturali e di conseguenza del conteggio è che un terzetto di pecore, un terzetto di mele e un terzetto di pietre hanno una cosa in comune: il numero 3!
Tuttavia, come spiega il filosofo e matematico Bertrand Russell, nel suo saggio “Introduzione alla filosofia matematica”, non bisogna commettere questo fraintendimento: “Un terzetto d’uomini è un esempio del numero tre, e il numero tre è un esempio di numero; ma il terzetto non è un esempio di numero“.

Tutti i terzetti hanno in comune il numero 3, ma nessuno dei terzetti costituisce il numero 3. Essi sono ben distinti dai duetti e dai quartetti, e ciò che li distingue è proprio il fatto di essere 3. Quindi un numero è la caratteristica comune a tutti gli insiemi costituiti da quel determinato numero di elementi. Il numero 7 per esempio è tecnicamente definito come l’insieme degli insiemi di 7 elementi.

Un’apparente tautologia

Questa affermazione sembra tautologica: come posso sapere il “numero di elementi di un insieme” se non conosco la definizione di numero e non so nemmeno cosa significhi contare?
Immaginiamo di avere duetti, terzetti e in generale insiemi di $n$ elementi, come posso raccogliere tutti quelli con lo stesso numero di elementi senza effettivamente contarli?
Russell utilizza il criterio della corrispondenza biunivoca. Dati due insiemi, essi hanno la stessa cardinalità (numero di elementi) se e solo se è possibile creare una funzione biunivoca tra i due. Ovvero una funzione che ad ogni elemento del primo insieme associa uno e un solo elemento del secondo.

Biiezione e contare

In questo modo è possibile raggruppare gli insiemi con la stessa cardinalità senza presupporre la capacità di contare. Fatto ciò è sufficiente dare un nome agli insiemi di insiemi (1 a quelli di 1 elemento, 2 a quelli di 2 e così via). In questo modo abbiamo definito i numeri in maniera consistente!

Cosa significa contare?

A questo punto resta solo da capire cosa significhi contare. Anche in questo caso è utile ragionare in termini di corrispondenze biunivoche. Soffermiamoci sul caso dell’osso di Ishago, su di esso ogni tacca sta a rappresentare un’unità. Non si sa cosa sia stato contato in questo modo, supponiamo i frutti raccolti durante la giornata. Ad ogni frutto corrisponde una tacca, quindi esiste una corrispondenza biunivoca tra l’insieme dei frutti e l’insieme delle tacche. Astraendo possiamo asserire che l’operazione di contare non è nient’altro che creare una corrispondenza biunivoca tra l’insieme degli oggetti da contare e un sottoinsieme dei numeri naturali!

Se vuoi approfondire ti consiglio l’articolo GEORG CANTOR: QUANTO È INFINITO L’INFINITO? in cui Lorenzo spiega come contare insiemi di infiniti elementi!

Spero che questo articolo ti sia piaciuto, nel prossimo vedremo come il concetto di numero si è evoluto nelle diverse culture. Ospite speciale: il numero 0!

Se ti interessa l’argomento dei numeri, del contare e la matematica più in generale ti consiglio questo libretto leggero ma interessante: L’uomo che sapeva contare

3 risposte a “La matematica conta: storia dei primi numeri”

  1. Avatar Pio Luigi Brusasco
    Pio Luigi Brusasco

    Mi è piaciuto, ma contare oggetti non vuol anche dire che per noi sono in qualche modo equivalenti? Che possono essere definiti con una parola astratta che definisce unaloro qualità?

    1. Avatar Paolo Boldrini
      Paolo Boldrini

      Direi proprio di sì. Anche avendo un gruppo di oggetti completamente diversi, nel momento in cui li si conta si mettono da parte le loro caratteristiche particolari per far risaltare la cardinalità dell’insieme. Spero di non aver malinterpretato la domanda. Grazie del commento!

  2. Avatar Augusto Bordato
    Augusto Bordato

    La successione o ordine dell’abbinamento fra i numeri e gli elementi di un insieme è arbitraria. Fonte di un malinteso è la corrispondenza fra il numero complessivo degli elementi e l’ultimo numero utilizzato nel loro conteggio. L’equivoco porta ad identificare l’insieme e un elemento (l’ultimo nel conteggio) dell’insieme, come avviene negli strumenti di misurazione, ad esempio in un righello.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.

Vai ad inizio articolo