Ciao. Eccoci con un nuovo articolo. Oggi andremo a rispondere ad una domanda che mi è stata fatta parecchie volte e che ho trovato anche molto richiesta su Quora e altri siti.
La domanda è: “Per studiare matematica, devo essere un genio? Devo essere dotato in maniera innata? Devo essere nato con un quoziente intellettivo parecchio elevato? Oppure chiunque sostanzialmente può andare a studiarla?”.
Intanto, prima di proseguire la lettura, ti ricordo che se preferisci guardare video al leggere articoli, qui trovi la versione video dei contenuti che ho poi trascritto qui sotto :
Beh, l’affermazione con cui ho aperto l’articolo era abbastanza una provocazione chiaramente. Infatti, per quanto mi riguarda, per esperienza personale e per i miei amici che ho conosciuto nei 5 anni di università, non è necessario essere un genio per studiare matematica.
Le tre cose più importanti, per me, sono
la determinazione,
la passione e
l’interesse nel portare avanti questi studi.
E’ innegabile, chiaramente, che esistono persone dotate naturalmente, persone che arrivano prima alla soluzione dei problemi, persone che comprendono prima i risultati matematici della gran parte degli altri. Ovviamente loro sono avvantaggiati nel percorso universitario in matematica.
Però, andiamo un po’ a vedere qual è la definizione classica che puoi trovare su un qualunque dizionario del termine genio.
Solitamente si definisce genio una persona con una spiccata intelligenza, dove questa intelligenza che lo contraddistingue dagli altri, dalla massa, è un qualcosa di innato.
Ovviamente quindi, una persona che abbia questa dote naturale è avvantaggiata nella possibile carriera in quanto matematico o matematica e, in particolare, in quanto studente di questa disciplina.
Tuttavia, secondo me, questo non impedisce agli altri, con lo studio, il dovuto tempo e la fatica, di arrivare ad ottimi risultati. Funziona un po’ come negli sport, dove le capacità innate aiutano ma non sono tutto. Se uno è particolarmente dotato in termini fisici e di talento naturale nel giocare a basket, per esempio, è chiaro che abbia una marcia in più rispetto ad un ragazzo minuto e basetto.
E’ anche chiaro che, in termini probabilistici, questo abbia maggiori possibilità di arrivare in NBA rispetto alla seconda persona.
Però, se questo ragazzo dotato di natura non ci mette impegno, non ci mette dedizione e costanza andandosi ad allenare, andando alle partite e mettendoci la testa, difficilmente arriverà a competere con i grandi del basket.
Cosa diversa invece è se andiamo a vedere quale potrebbe essere la carriera dell’altro ragazzo, quello più minuto. Lui, magari, è molto appassionato, la natura non è dalla sua parte però è determinato, si allena costantemente, continua a migliorare giorno dopo giorno e, soprattutto, punta sul gioco di squadra. Ovvero, fa sue delle capacità che vanno a colmare le lacune che la natura purtroppo gli ha dato..
In parole povere, questo secondo ragazzo non si rassegna al fatto che ci sia qualcuno che è più forte di lui. Invece, continua a lavorare e, magari, un giorno può diventare un ottimo giocatore di serie B o magari anche in serie A .
Insomma, secondo me la cosa importante nello sport come nello studio della matematica, è il voler capire le cose, il voler capire come risolvere un problema e quindi l’essere determinati e costanti nello studio.
Ovviamente il parallelo che ho fatto con lo sport vale in modo limitato, è solo per dare un’idea. E’ evidente che la competizione sportiva non abbia alcun legame nella matematica, dato che il successo di una persona nel risolvere un problema non implica in nessun modo la sconfitta degli altri 😉 . Comunque, penso possa essere sufficientemente esplicativo.
Dai discorsi che ho fatto qui sopra, probabilmente capirai che io non ritengo un motivo valido per rinunciare all’iscrizione all’università di matematica la frase “ma io non vado bene in matematica alle superiori”.
Infatti, se comunque il tuo interesse verso la matematica è forte (intendo verso la matematica, non verso il saper fare i conti correttamente 😉 ), allora secondo me hai tutte le carte in regola per iscriverti e studiare matematica.
Questo era un breve articoletto in cui ho condiviso la mia idea riguardo questo tema. Mi farebbe ovviamente piacere leggere qui sotto nei commenti cosa ne pensi, o se hai qualsiasi suggerimento per nuovi video/articoli.
Con ciò ti saluto e ci leggiamo alla prossima, ciao!
Ciao. Eccoci con un nuovo articolo. Oggi andremo a continuare la lista di terminologie matematiche spiegate brevemente. In questa sequenza di articoli/video ho previsto contenuti un po’ enciclopedici, in cui cerco di prendere quei termini/concetti che all’università vengono dati per scontati (e magari ti fai anche dei problemi a porre delle domande a riguardo perché pensi siano stupide).
Prima di proseguire, se preferisci guardare video alla lettura, qui trovi il video:
Oggi andremo a vedere che cosa si intende per principio del terzo escluso.Questo è un risultato molto semplice da capire. E’ un principio che è abbracciato in maniera molto aperta da gran parte dei rami della matematica. Vedremo poi però che ci sono anche dei matematici che non lo approvano, che non prendono in considerazione questo principio e sono chiamati matematici costruttivisti.
Il principio del terzo escluso si basa su un’idea molto semplice, o meglio evidenzia un’idea molto semplice: una proposizione matematica può essere o vera o falsa, non può esserci una terza possibilità.
Per esempio, quando sei davanti ad un numero naturale e affermi che è pari, ci sono solo 2 possibilità: hai ragione o hai torto. Infatti un numero naturale o è pari o non lo è, e in tal caso lo chiamiamo dispari. Però non può esserci una terza possibilità, ed ecco perché parliamo di “escludere il terzo”.
Questo è anche il principio che regola fondamentalmente la dimostrazione per assurdo. Infatti l’idea alla base di questa tecnica dimostrativa è di partire da un’assunzione (che solitamente è l’opposto di quello che vogliamo dimostrare) e poi, tramite dei ragionamenti logici e coerenti, arrivare ad una contraddizione.
Da ciò, possiamo dedurre che siccome partendo dall’assunzione di partenza, siamo arrivati ad una contraddizione, allora questa è errata. A questo punto entra a gamba tesa il principio del terzo escluso. Infatti, siccome non c’è alcuna possibilità oltre al fatto che un’assunzione sia errata o corretta, questa contraddizione vuol dire che abbiamo mostrato la validità della tesi.
Occhio però! Abbiamo mostrato la tesi non in modo costruttivo, ma l’abbiamo fatto escludendo l’altro caso possibile. Ecco dove arrivano i matematici costruttivisti, che si rifiutano di accettare risultati mostrati in questo modo e, più in generale, decidono di rinunciare completamente al principio del terzo escluso.
I matematici costruttivisti, vogliono mostrare tutti i risultati in modo costruttivo, ovvero concretamente partire dalle ipotesi e, logicamente, arrivare alla tesi.Detto ciò, magari non hai mai sentito parlare di questo principio, ma probabilmente avrai già utilizzato, magari senza accorgertene, tutti questi concetti di cui abbiamo parlato. Perché? Perché semplicemente è un principio molto ragionevole.
Noi infatti siamo abituati a dare per scontato che un concetto matematico sia o vero o falso. Chiaramente, nel mondo reale, nei problemi della vita concreta, ci sono delle verità opinabili, ci sono delle situazioni dove non c’è solo l’attributo di verità o falsità, e ci sono cose discutibili.
Però in questi casi si parla di “problemi” del linguaggio comune o di situazioni legate alle opinioni, ovvero tutte cose che in matematica non sono ben viste e presenti.
Con ciò spero di aver chiarito il principio del terzo escluso. Ti ricordo poi che se hai altri termini/concetti che ti interesserebbe che trattassi, puoi lasciare tranquillamente un commento qui sotto e proverò a trattarlo in altri video/articoli.
Con ciò ti saluto, e ci leggiamo al prossimo articolo 😉
Questo articolo è molto importante in quanto, visti un po’ i miei interessi, mi dedicherò particolarmente al mondo della matematica applicata e in questo settore il concetto di modello matematico è fondamentale.
Se alla lettura preferisci la visione di un video, puoi guardare la versione video di questo articolo qui:
In futuro probabilmente andremo ad analizzare qualche modello in particolare, come per esempio modelli per la diffusione di epidemie, per il trasporto del calore, per l’andamento del traffico o quant’altro… Quindi questa introduzione sarà fondamentale.
Cos’è un modello matematico?
Infatti, nelle scienze applicate e nel mondo fisico, i modelli matematici vengono utilizzati quotidianamente, soprattutto per dare una formalizzazione a quello che succede nella realtà e poter poi avere degli strumenti per capire cosa sta succedendo, cosa potrebbe succedere e perché.
Infatti, per modello matematico, intendiamo un insieme di relazioni e/o leggi matematiche in grado di catturare gran parte delle caratteristiche di un fenomeno e permetterci poi quindi di controllarne lo sviluppo, il cambiamento, l’andamento e poter trarre informazioni utili riguardo esso.
Da ciò segue naturalmente che il modello e la struttura matematica che si va a costruire è fondamentale che sia rilevante e coerente con il mondo fisico e l’applicazione a cui andiamo a riferirci.
Questo è un approccio molto diverso rispetto a quello tipico della matematica pura. Per esempio, nella congettura di Goldbach questo legame tra applicabilità del risultato e importanza dello stesso non è necessario da un punto di vista matematico. Se non sai cosa sia la congettura di Goldbach ecco un video in cui te la introduco:
Finché le leggi della matematica si riferiscono alla realtà, non sono certe, e finché sono certe, non si riferiscono alla realtà.
(Albert Einstein)
È importante specificare inoltre, che quando parliamo di scienze applicate non stiamo solo andandoci a riferire a quelle classiche, quelle a cui riusciamo a pensare più naturalmente in quanto legate alla matematica (come per esempio la fisica o la chimica), ma facciamo riferimento a molte altre scienze complesse tra le quali ricadono la medicina, la finanza, la biologia, l’ecologia e varie altre.
Proprietà ed elementi fondamentali dei modelli matematici
La modellazione matematica intesa come
costruzione di un modello matematico, a cui segue poi
una fase di analisi e implementazione numerica e
un confronto dei risultati ottenuti con la realtà )quindi tramite via sperimentale),
è ormai all’ordine del giorno. Precisamente, questi modelli matematici ormai si è capito che sono davvero fondamentali e ci permetteranno di capire fenomeni complessi in maniera più rigorosa, così da poter quindi prevedere i possibili esiti degli stessi.
Sostanzialmente, l’origine di un modello matematico può essere ridotta a due elementi fondamentali: il primo sono delle leggi generali, il secondo sono delle relazioni costitutive.
Quindi vediamo che cosa sono questi due mattoni della costruzione di un modello matematico. Partiamo dalle leggi generali. Queste sono di natura abbastanza teorica, quindi possono essere per esempio le leggi della meccanica e i principi di conservazione dell’energia o del momento angolare. Esse sono quindi delle relazioni fisiche oppure delle leggi di bilanciamento chimiche e quant’altro. L’importanza di queste leggi è che non sono specifiche del singolo modello, ma possono descrivere vari fenomeni.
Per quanto riguarda invece le relazioni costitutive, abbiamo qualcosa di carattere più sperimentale. Infatti, in questo caso si vanno per esempio a utilizzare delle peculiarità del fenomeno in analisi. Tramite via sperimentale, si vanno a introdurre delle particolari costanti, oppure si va a modellizzare una particolare funzione in conseguenza a qualche risultato ottenuto sul campo. Questo secondo mattone quindi è un qualcosa di strettamente legato al modello e non generalizzabile, differentemente per esempio dalle leggi della meccanica che valgono per vari fenomeni, varie applicazioni.
Alcuni esempi di leggi costitutive sono la legge di Fourier per il flusso di calore oppure ci sono molte altre leggi che ci permettono di decidere, per esempio, che forma dare a un flusso numerico oppure a un flusso in generale. Queste scelte le faremo chiaramente in base a quello che stiamo analizzando.
Il risultato della combinazione di questi due mattoni fondamentali di un modello matematico è solitamente descrivibile in forma sintetica tramite un’equazione o un sistema di equazioni, spesso differenziali alle derivate parziali.
Questa struttura complessa non è necessaria in ogni circostanza. Può benissimo esserci qualche modello, comunque interessante e utile per certi fenomeni, che non coinvolge nemmeno equazioni differenziali. Magari vedremo qualcosa riguardo questo tema.
Comunque spesso i modelli che si vanno a costruire per analizzare situazioni che evolvono nel tempo (o nello spazio), coinvolgono equazioni alle derivate parziali e in questo ambito ti consiglio (nel caso tu sia interessato a questi temi) di guardarti questo libro: Equazioni a derivate parziali: Metodi, modelli e applicazioni. Questo libro si concentra soprattutto sulla costruzione dei modelli e fornisce anche molti strumenti per analizzare questi modelli, vederne le proprietà e magari risolvere (nel caso sia possibile) anche le equazioni alle derivate parziali sottostanti. La risoluzione di queste equazioni non è sempre possibile e magari questo sarà argomento di altri video o articoli (un argomento legato a questo sono gli spazi di Hilbert, se ti interessa puoi capire di cosa si parla in questo articolo https://www.mathone.it/spazio-hilbert/).
Esiste un solo modello per ogni fenomeno?
Un’altra cosa importante da evidenziare, è che nel momento in cui andiamo a interessarci a un fenomeno legato a una delle scienze complesse, è quasi certo che il modello che possiamo andare a costruire non sia unico. È quindi importante chiedersi se il modello che andiamo a costruire vada bene o meno e bisogna essere in grado di capire se questo modello possa funzionare o meno.
Ecco che dobbiamo introdurre il concetto di problema ben posto:
Di modelli ce ne sono un’infinità, alcuni sono di semplice comprensione e interpretazione…altri non lo sono. C’è sempre margine per complicare le cose anche se è importante evidenziare il fatto che non è detto che un modello più complicato di un altro sia in grado di spiegare meglio un certo fenomeno. Spesso la sintesi è una grande qualità di un modello a volte. Non è infatti raro che sia premiata la disponibilità a sacrificare la capacità di prevedere un fenomeno a favore di rendere il modello un po’ più semplice. Il perché dietro a questo fatto è che, grazie a questa scelta, magari possiamo abbassare i tempi di calcolo o i costi computazionali per poter elaborare le informazioni. Da ciò segue che potremmo riuscire a trovare delle informazioni utili su una situazione concreta in tempi ragionevoli. La velocità può essere davvero utile.
Per esempio, nel campo dello studio delle epidemie, la velocità e la capacità di prevedere in fretta dove potrebbe diffondersi un’epidemia, oppure le tempistiche con cui intervenire con un certo farmaco a volte possono premiare più dell’avere una descrizione estremamente accurata e dettagliata della realtà. Chiudiamo quindi notando che spesso è utile ponderare precisione con velocità di elaborazione.
Se ti interessa vedere un modello per l’analisi delle epidemie, il modello SIR, davvero snello ma comunque efficace per descrivere il numero di infetti di un’epidemia, ti consiglio di guardare questo mio video:
Probabilità è il termine matematico che fa riferimento all’eventualità che qualcosa accada o non accada, come, per esempio, pescare un asso da un mazzo di carte o prendere una caramella rossa da una confezione con colori assortiti.
La probabilità è un aspetto che influenza ogni giorno della vita delle persone, quando vengono prese decisioni che non si sa quali conseguenze porteranno con sé. Per esempio, utilizziamo la probabilità quotidianamente per prevedere il meteo. I meteorologi non possono predire con totale esattezza che tempo ci sarà, utilizzano strumenti ad hoc per determinare quali siano le probabilità che piova, nevichi o grandini. Se la possibilità di pioggia è data al 60%, significa che su 100 giorni con condizioni meteorologiche simili, in 60 ha effettivamente piovuto. E ognuno di noi, nel suo piccolo, deve decidere se uscire con un ombrello oppure no.
La probabilità permea anche le strategie sportive: un allenatore di baseball, per esempio, valuta la media in battuta di ciascun giocatore prima di farlo mettere in fila. Quando si pensa alle strategie e alla probabilità, però, l’esempio più calzante nonché il primo a venire in mente è sicuramente il poker.
La matematica e la probabilità nel poker
Spesso per descrivere la probabilità si usa l’esempio del lancio di una moneta: ci sono due possibili risultati – testa o croce. E la probabilità in entrambi i casi è del 50%. Quando si ragiona con un mazzo di carte, però, il numero dei risultati possibili cresce notevolmente. Ogni mazzo di carte da poker, nello specifico, ha 52 carte divise per 4 semi diversi (cuori, picche, quadri e fiori) e organizzate in una scala di 13 valori (i numeri da 1 a 10 e Jack, Regina e Re): questo significa che le probabilità di pescare un asso come prima carta sono 1 su 13 (7,7%), mentre quelle di pescare una qualsiasi carta di picche sono di 1 su 4 (25%).
A differenza delle monete, poi, si potrebbe dire che le carte da poker hanno una memoria: mentre le probabilità di ottenere testa o croce dopo aver lanciato una monetina rimangono sempre del 50% e 50%, dopoché si pesca un asso da un mazzo, le probabilità di pescare un altro subito dopo non rimangono fisse al 7,7% come quando nessuna carta era ancora stata presa. Questo perché dopo aver pescato un asso, ne rimangono solamente 3 nel mazzo, il che abbassa le probabilità di prenderne un altro al 5,9% (3 su 51).
Quello dell’asso è un semplice esempio per comprendere quanto la probabilità influenzi le partite di poker. La probabilità è una variante che fluttua parecchio, pertanto i giocatori non possono affidarsi solamente alla fortuna: i campioni sanno che usare la matematica per vincere ai tavoli di poker è un aspetto importante, a cui vanno però imprescindibilmente associate le abilità, le conoscenze, la disciplina e la pazienza – i veri segreti del successo. Capire come funziona la probabilità e, soprattutto, imparare a calcolarla, tuttavia, è fondamentale per poter prendere le decisioni migliori durante ogni mano: avere una solida base matematica di calcolo della probabilità, infatti, aiuta ad aggiustare il tiro delle strategie e delle tattiche di gioco, e a dare ragionevoli aspettative sui possibili risultati.
Quindi, nel concreto, qual è un esempio di probabilità nel poker? La mano migliore in assoluto è il Royal Flush (scala reale massima), che è composta da 10, Jack, Regina, Re e Asso. Ci sono solo 4 vie per ottenere questa mano, pertanto le probabilità che capiti sono di 4÷2.598.960, cioè 0,000001539.
La probabilità per analizzare le polizze assicurative per le auto
Qual è il piano assicurativo migliore per ogni famiglia? Il calcolo della probabilità aiuta nella decisione, poiché è opportuno considerare quali siano le probabilità, appunto, che si compili una constatazione amichevole. Se, per esempio, 12 automobilisti su 100 (quindi il 12%) nella zona hanno investito un cinghiale, ha più senso considerare di stipulare una polizza Kasko piuttosto che una Bonus/Malus.
Da come decidiamo di vestirci ogni giorno a come passiamo il tempo divertendoci con i nostri hobby preferiti, fino a come tuteliamo noi stessi e la nostra vettura, la probabilità gioca un ruolo fondamentale e rappresenta un aiuto importante per prevedere i possibili risultati e fare la scelta migliore.
Cos’è un sistema integrabile? Ci sono esempi semplici di sistemi integrabili? In questo articolo cercheremo di capire il concetto di integrabilità di un sistema dinamico, partendo da degli esempi e derivando quindi qualche risultato più generale.
Introduzione al concetto di integrabilità
In un vecchio articolo sul sito abbiamo parlato di cosa sia un integrale primo ed un sistema dinamico (se vuoi lo trovi qui https://www.mathone.it/integrale-primo/ ), oggi invece andremo a scoprire quando un sistema sia integrabile.
Cosa si può intuire dal termine “integrabile”? Supponiamo di partire da una semplice equazione differenziale : $x'(t) = 6x(t)$. Secondo te questa è integrabile?
Beh, intuitivamente sì, nel senso che possiamo integrarla, ovvero possiamo calcolarne la soluzione in forma chiusa. Infatti la funzione $x(t) = x(0)e^{6t}$ risolve l’equazione, per cui siamo riusciti ad integrare l’equazione.
Bene, questo era un esempio semplice potresti dire, ma come possiamo capire se un sistema più complicato sia o meno integrabile? Cosa vuol dire che esso è integrabile?
Intanto definiamo più rigorosamente un generico sistema dinamico, seguendo però un approccio geometrico, ovvero parlando di campi vettoriali invece che di sistemi di equazioni differenziali. Riguardo la distinzione tra questi due punti di vista puoi vedere un video che ho fatto qui sotto:
Definiamo quindi un campo vettoriale $X:\mathbb{R}^n\rightarrow\mathbb{R}^n$ che sia di classe $\mathcal{C}^1(\mathbb{R}^n,\mathbb{R})$, così che valga il teorema di esistenza e unicità. Il sistema di equazioni differenziali associato è $$\dot{x}(t)=X(x(t)).$$
Tale sistema si dice integrabile se si può trovare una funzione $x=x(t)$, tramite una sequenza di operazioni algebriche e integrazioni, che risolva il sistema di equazioni differenziali qui sopra presentato.
Bene, una volta introdotto questo concetto però è interessante scoprire se ci sono dei risultati, delle ipotesi, che ci garantiscano l’integrabilità del sistema senza integrarlo direttamente.
Infatti, immagino tu ci abbia fatto caso, la semplice equazione $x’=6x$ l’abbiamo definita integrabile perchè l’abbiamo esplicitamente risolta, ovvero integrata.
Ma la domanda importante è: esistono delle ipotesi che quando soddisfatte da un sistema ci permettono di definirlo integrabile?
Ci tengo ad evidenziare un parallelismo con le equazioni algebriche e la loro risolubilità. La teoria della risolubilità in quel caso fa riferimento ai gruppi di Galois e non andremo certo ad approfondirla, visto che non so praticamente nulla a riguardo. Però se tu avessi dimestichezza con quegli argomenti, sappi che c’è uno stretto legame almeno in termini di approccio ed intuizioni tra queste due aree della mateamatica.
Prima di vedere il più semplice risultato di questo tipo (la teoria dell’integrabilità è molto ampia e richiede buone basi teoriche nel campo della geometria differenziale e teoria dei sistemi dinamici), è importante fare una precisazione.
L’integrabilità di un sistema dinamico ( o di un campo vettoriale più in generale ), è strettamente legata alla presenza di quantità/oggetti invarianti per il sistema. Per esempio in questo campo diventano molto importanti insiemi invarianti, misure invarianti, integrali primi o simmetrie dinamiche (campi vettoriali invarianti).
Se ti interessa capire cosa sia un integrale primo, qui ho fatto un video in cui introduco questo concetto:
Integrabilità algebrica: teorema di integrabilità di Lie
Supponiamo di avere ancora un generico campo vettoriale $X=X(x_1,…,x_n)$ che sia sufficientemente regolare, per esempio $\mathcal{C}^1$. Supponiamo inoltre che esso ammetta $(n-1)$ integrali primi che siano funzionalmente indipendenti.
Prima di tutti specifichiamo cosa si intenda con quest’ultima frase. Vuol dire che ci sono $(n-1)$ funzioni $f_1,…,f_{n-1}:\mathbb{R}^n\rightarrow \mathbb{R}$ che soddisfano le due seguenti proprietà:
$\mathcal{L}_Xf_i = \nabla f_i \cdot X = 0 ,\;\forall i=1,…,n-1,$
$\nabla f_i \text{ e }\nabla f_j \text{ non sono paralleli per ogni }i\neq j.$
Allora se ciò è vero, possiamo integrare il sistema. Nel caso ci sia un integrale primo, come spiego nel video, abbiamo che gli insiemi di livello di ognuna di queste funzioni è invariante. Inoltre essendo che i gradienti di queste funzioni non sono paralleli, ovvero non sono linearmente dipendenti, ciò vuol dire che gli insiemi di livello di questi integrali primi sono tutti diversi.
Quest’ultimo fatto è dovuto alla proprietà geometrica del gradiente di essere localmente ortogonale agli insiemi di livello di $f$, per esempio se $f(x,y)=x^2+y^2$, il gradiente è $\nabla f (x,y) = [2x,2y]^T$ che, come puoi vedere nel grafico qui sotto, è localmente ortogonale alle circonferenze che definiscono gli insiemi di livello di $f$.
Cosa vuol dire nel concreto questo? Vuol dire che se fissiamo un punto iniziale da cui lasciare evolvere la dinamica, $y_0\in\mathbb{R}^n$, sappiamo che per ogni $i=1,…,n-1$, la dinamica evolverà per ogni tempo $t$ nell’insieme di livello dove vive $y_0$ di $f_i$.
Quindi supponiamo che $f_i(y_0)=c_i\in\mathbb{R}$ per ogni $i=1,…,n-1$. Allora abbiamo che l’orbita del punto $y_0$ rispetto al campo vettoriale $X$, ovvero l’insieme
è contenuto nell’insieme di livello $\{x\in\mathbb{R}^n : f_i(x)=c_i\}$ per ogni $i=1,…,n-1$. Di conseguenza esso apparterrà all’insieme di livello della funzione vettoriale
$$ F : \mathbb{R}^n\rightarrow \mathbb{R}^{n-1} ,\quad F(x):=(f_1(x),…,f_{n-1}(x))$$
associato al punto $\boldsymbol{c}=(c_1,…,c_{n-1})\in\mathbb{R}^{n-1}$. Essendo gli integrali primi indipendenti, questa è una funzione suriettiva e l’insieme di livello $\{x\in\mathbb{R}^n: \,F(x)=\boldsymbol{c}\}$ è di dimensione 1, ed è invariante rispetto alla dinamica. Di conseguenza sappiamo che le orbite sono contenute in questi sottoinsiemi invarianti.
In più si vede facilmente che il sistema può essere integrato esplicitamente, questo è anche chiamato teorema di integrabilità di Lie.
Giusto per essere chiari, il fatto che sia integrabile esplicitamente non vuol dire che non rimarranno integrali da calcolare nell’espressione finale, vuol dire che a meno di essere in grado di calcolare quegli integrali, abbiamo un’espressione esplicita. Spesso infatti si incontrano i cosiddetti integrali ellittici che non sono risolvibili, ma ciò non è un problema o almeno non è un ostacolo verso la definizione di integrabilità.
Per accertarci della possibilità di integrare il sistema e trovarne l’integrale generale in forma chiusa, senza perderci in formalismi eccessivi, supponiamo di definire $n-1$ variabili come segue: $y_1=f_1$, …., $y_{n-1}=f_{n-1}$. Prendiamo poi una $n-$esima variabile da esse indipendente (questa esiste visto che abbiamo uno spazio di dimensione $n$: $\mathbb{R}^n$), chiamiamola $y_n$.
Allora siccome, per quanto abbiamo visto prima riguardo gli integrali primi, gli insiemi di livello di queste funzioni sono invarianti, esiste una funzione $g:\mathbb{R}^n\rightarrow \mathbb{R}$ tale che il sistema può essere riscritto, nelle nuove coordinate $\boldsymbol{y}$ come segue:
$$ \dot{y}_1 = 0 $$
$$ …. $$
$$ \dot{y}_{n-1} = 0 $$
$$ \dot{y}_n = g(y_1,…,y_n) $$
dove l’ultima equazione può essere integrata e possiamo quindi risolvere in forma chiusa il sistema.
Proviamo a ragionare più nel dettaglio su questa nuova formulazione del sistema. Quello che abbiamo fatto è trasformare il campo vettoriale di partenza, che era nelle coordinate $\boldsymbol{x}=(x_1,…,x_n)$, nelle nuove coordinate $\boldsymbol{y}=(y_1,…,y_n)$ che non sono prese a caso ma sono “speciali”. Per precisazione, questa operazione si dice coniugazione topologica del campo vettoriale.
Detto ciò, come possiamo sfruttare queste coordinate? Beh, vediamo facilmente che le prime $(n-1)$ equazioni sono integrabili e restituiscono $y_i=c_i$ con $i=1,…,n-1$. Da ciò segue che non resta che risolvere l’ultima equazione differenziale:
che ci permette di ricavare $y_n(t)$, a meno di risolvere integrali.
Conclusione
La teoria dell’integrabilità è un campo molto interessante sia nel caso di campi vettoriali su spazi vettoriali (o varietà) di dimensione finita che infinita (nel caso della teoria quantistica per esempio). I risultati però si fanno parecchio complicati e quindi ho preferito concentrarmi solo su uno tra i risultati più intuitivi, ovvero il teorema di Lie.
Un altro famoso e classico risultato invece riguarda i sistemi Hamiltoniani, esso è il teorema di Liouville-Arnol’d e, nel caso le sue assunzioni siano soddisfatte da un sistema Hamiltoniano, esso ci porta a definire completamente integrabile tale sistema.
Magari su questo risultato possiamo soffermarci in un articolo più avanti, dopo averne dedicato uno all’introduzione dei campi vettoriali Hamiltoniani, così da definire un po’ di contesto.
Per questo articolo direi che possiamo concludere, se hai qualche domanda o suggerimento lascia pure un commento qui sotto, appena posso ti risponderò 🙂