Archivi autore: Davide Murari

Differenze finite

Cosa sono le differenze finite

In questo articolo andremo a parlare di differenze finite. Questo sarà un articolo introduttivo all’argomento.

Oltre alla descrizione del metodo vedremo un paio di esempi molto semplici scritti con Matlab, dove andremo a risolvere l’equazione di Poisson su un intervallo $I\subset\mathbb{R}$ e una sua variante.

Se vuoi vedere anche un video che ho fatto su questo argomento lo trovi sul canale Youtube 😉

Di sicuro ti è stato detto o comunque hai studiato e letto da qualche parte che è davvero piccolo l’insieme di equazioni differenziali risolvibili in maniera analitica ed esatta. Molto poche ammettono una soluzione esprimibile tramite una funzione che ha una sua espressione precisa. Descrivibile in forma chiusa.

Per questo motivo è necessario trovare un’alternativa alla procedura analitica. La procedura esatta che ci permette di arrivare ad una soluzione delle equazioni è infatti spesso limitante.

Ok, è importante saper risolvere gli esercizi in cui viene chiesto di trovare un integrale generale di un’equazione differenziale, ma questi sono appunto esercizi. Spesso le equazioni che definiscono un modello matematico, una volta che si riesce a mostrare che una soluzione esista, sono trattati in termini numerici.

Infatti tutto quello che è presente nel mondo, nella realtà, è descritto da una variazione di certe quantità, di certe proprietà mentre il tempo scorre liberamente.

Quindi come possiamo descrivere tutti questi fenomeni? Beh, intanto dobbiamo necessariamente coinvolgere delle equazioni differenziali. Quindi chiaramente non possiamo fermarci davanti al fatto che non sia possibile risolvere un’equazione di questo tipo in maniera esatta, in forma chiusa.

Se a noi interessa fare previsioni su qualche modello, su qualche fenomeno, dobbiamo trovare comunque un modo per ottenere informazioni sulla soluzione. A questo punto si aprono due strade molto interessanti:

L’analisi qualitativa (di cui magari ci occuperemo in altri articoli e puoi trovare già un esempio in questo articolo https://www.mathone.it/pendolo-semplice/) ma puoi già trovare un mio video sull’argomento qui di seguito:

e l’approssimazione numerica della soluzione, argomento di cui inizieremo ad occuparci proprio in questo articolo.

Per questa prima introduzione parleremo di equazioni differenziali ordinarie, quindi del caso in cui compaiono solo derivate ordinarie e c’è una sola variabile. Non andiamo quindi a coinvolgere le equazioni alle derivate parziali anche perché in quel caso il metodo alle differenze finite è abbastanza limitante perché non è comodo per lavorare con domini di dimensioni di forma particolari perché è necessario avere delle griglie fatte in un certo modo (spesso in quel caso si usa il metodo degli elementi finiti).

Comunque di sicuro porterò qualche esempio riguardo al metodo applicato al caso delle derivate parziali perchè permette di analizzare, senza andare troppo nel complesso, sistemi che evolvono in spazio e tempo, ampliando così di molto la classe dei modelli che potremo analizzare.

Ma torniamo alle equazioni differenziali ordinarie. Questa tipologia di equazioni solitamente ci interessa risolverle in un certo dominio. Per poterle risolvere numericamente dobbiamo imporre un’importante condizione su questo dominio: deve essere limitato.

Numericamente infatti non possiamo direttamente risolvere un’equazione differenziale su tutta la retta reale, ma dobbiamo considerarne un sottodominio compatto della forma $[0,L]$ con $L<+\infty$.

Le differenze finite si prestano molto bene a risolvere equazioni differenziali ordinarie che descrivono fenomeni stazionari, ovvero nel caso le quantità non varino nel tempo ma nello spazio. Spesso ci si riferisce ad essi come problemi al bordo (boundary value problems o BVP). Per esempio parliamo dell’equazione di Poisson $$-\frac{d^2u(x)}{dx^2}= f(x)$$ con $x\in[0,L]$ ed $f:\mathbb{R}\rightarrow \mathbb{R}$ una funzione qualsiasi, con delle opportune condizioni al bordo $u(0)=a$ e $u(L)=b$.

Chiaramente vediamo subito che serve un minimo di regolarità per la funzione $f$ per poter dire di avere una soluzione classica in questo esempio, ovvero siccome dobbiamo calcolare la derivata seconda di $u$ si può richiedere di avere $u\in\mathcal{C}^2(\mathbb{R},\mathbb{R})$ e quindi segue naturalmente $f\in\mathcal{C}^0(\mathbb{R},\mathbb{R})$. Se hai già sentito parlare di soluzioni deboli sai che in realtà si può chiedere meno regolarità per $f$ in generale, ma non preoccupiamocene per questo articolo.

Andiamo quindi ad introdurci alle tecniche approsimative che ci porteranno a definire uno schema alle differenze finite per risolvere l’equazione differenziale precedente, che possiamo per esempio complicare anche passando a questa dove comprare anche la derivata prima :$$\frac{d^2u(x)}{dx^2}+\frac{du(x)}{dx}=f(x)$$ per ogni $x\in[0,L]$ e ancora delle buone condizioni al bordo.

La prima idea che dobbiamo avere per approcciare l’approssimazione di una derivata, perché è questo che vogliamo fare, con delle strategie alternative è quello di definire una discretizzazione del nostro dominio.

Cos’è una discretizzazione? Semplicemente vogliamo dividere il nostro intervallo $[0,L]$ in intervallini sufficientemente piccoli, la cui unione restituisce esattamente l’intero dominio:

Definiamo la discretizzazione $$\tau = \{x_1=0<x_2<…<x_{N-1}<x_N=L\}$$ in modo dale che $$\cup_{i=1}^{N-1} [x_i,x_{i+1}] = [0,L].$$

Questa discretizzazione può essere fatta in maniera uniforme o non uniforme nel senso che le distanze $$\Delta x_k = x_{k+1}-x_k$$ possono essere rispettivamente tutte uguali o diverse.

Per semplicità d’ora in poi nella trattazione e anche nel codice supporremo tale discretizzazione uniforme e chiamiamo quindi $\Delta x = x_{n+1}-x_n$.

Benissimo ora siamo pronti a fare lo step fondamentale dietro l’idea delle differenze finite.

Se ti ricordi un po’ come ti è stato introdotto il concetto di derivata, ti ricorderai senz’altro che è coinvolto il limite del rapporto incrementale

Infatti la derivata di una funzione $u:\mathbb{R}\rightarrow\mathbb{R}$ è definita come il limite del rapporto incrementale, qualora esso sia finito:

$$ u'(x) = \lim_{\Delta x\to 0}\frac{u(x+\Delta x)-u(x)}{\Delta x}. $$

Allo stesso modo si può definire anche la derivata seconda:

$$ u”(x) = (u'(x))’ = \lim_{\Delta x\to 0}\frac{u'(x+\Delta x)-u'(x)}{\Delta x}.$$

Introduciamo quindi l’ultima notazione: $u(x_k) \approx u_k$, ovvero noi quello che andremo a calcolare sarà $u_k$ che è l’approssimazione numerica della soluzione esatta in $x_k$.

Ottimo, ora possiamo finalmente fornire un’approssimazione alle differenze finite di queste due derivate. Per farlo basta la semplice idea: invece di passare al limite su $\Delta x$, definiamo una discretizzazione sufficientemente raffinata del dominio $[0,L]$, ovvero tale che gli elementi $x_k$ e $x_{k+1}$ distano sufficientemente poco.

Ecco quindi una prima approssimazione della derivata

$$ u'(x_k)\approx \frac{u_{k+1}-u_k}{\Delta x}.$$

Questa è però una stima un po’ rozza infatti si può mostrare, espandendo con i polinomi di Taylor, che $$|u'(x_k)-\text{questa approssimazione}|$$ va a zero con la stessa velocità con cui ci va $\Delta x$, quindi è un’approssimazione di ordine 1:

$$ u(x_{k+1}) = u(x_k) + u'(x_k)(x_{k+1}-x_k) + o(\Delta x^2) $$

$$\frac{1}{\Delta x}(u(x_{k+1})-u(x_k)) = \frac{1}{\Delta x} (u(x_k)+u'(x_k)\Delta x + o(\Delta x^2)-u(x_k))$$

$$ = u'(x_k) + o(\Delta x).$$

Un modo per ottenere un’approssimazione più precisa, del secondo ordine, è quello di procedere con una differenza finita centrata invece che in avanti come abbiamo visto prima. Ti chiedo di provare a verificare da solo che la prossima approzione è precisa al secondo ordine 😉

$$ u'(x_k) \approx \frac{u_{k+1}-u_{k-1}}{2\Delta x}. $$

Similmente, partendo dalla differenza finita in avanti vista prima, si può ottenere un’approssimazione accurata al secondo ordine della derivata seconda come segue:

$$ u”(x_k) \approx \frac{\frac{u_{k+1}-u_k}{\Delta x} – \frac{u_k-u_{k-1}}{\Delta x}}{\Delta x} $$

$$ = \frac{u_{k+1}-2u_k+u_{k-1}}{\Delta x^2}.$$

Ottimo, direi che con la “teoria” siamo a posto. Vediamo di applicare questi risultati alle due equazioni prima introdotte. Prima però è importante rimarcare il fatto che il risultato del metodo delle differenze finite sarà un vettore che corrisponde alle approssimazioni della soluzione dell’equazione analizzata nei nodi della discretizzazione. Otterremo quindi un vettore $\vec{u}\in\mathbb{R}^N$ definito come segue:

$$ \vec{u} \approx \begin{bmatrix} u(x_1) \\ u(x_2) \\ . \\ .\\ . \\ u(x_N) \end{bmatrix} $$

e solitamente quando rappresenteremo graficamente la soluzione ottenuta si costruisce un’interpolazione lineare di tali valori, ovvero negli intervalli $(x_k,x_{k+1})$ si congiungono i punti $(x_k,u_k)$ e $(x_{k+1},u_{k+1})$ con un segmento come puoi vedere qui sotto:

Ottimo direi che la parte introduttiva può dirsi chiusa, qui di seguito oltre ai codici che ho scritto per Matlab e che puoi scaricare cliccando sul link di GitHub, ti riporto l’idea in breve dietro l’implementazione. La cosa interessante da precisare per il codice è che l’ho scritto in forma matriciale. Ho definito quindi due matrici $D1$ e $D2$ in modo tale che la loro azione sul vettore $u$ permetta di ottenere rispettivamente l’approssimazione della derivata prima e della derivata seconda. Ecco qui cosa intendo:

$$D1\, u = \begin{bmatrix}
0& 0&0& \dots &\dots \\
-1/(2\Delta x)& 0& 1/(2\Delta x)&0&\dots\\
0& -1/(2\Delta x)& 0& 1/(2\Delta x)&0\\ 0&\ddots&\ddots&\ddots&\dots\\
\dots& \dots& \dots& 0& 0
\end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ . \\ .\\ . \\ u_N \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{u_3-u_1}{2\Delta x} \\ . \\ .\\ \frac{u_N-u_{N-2}}{2\Delta x}\\ 0 \end{bmatrix} $$

$$D2\, u = \frac{1}{\Delta x^2}\begin{bmatrix}
1& 0&0& \dots &\dots&\dots&\dots \\
1& -2& 1&0&0&0&\dots\\
0& 1& -2&1&0&\dots&\dots\\ 0&\ddots&\ddots&\ddots&\dots&\dots&\dots\\
\dots& \dots&\dots&\dots& \dots& 0& 1
\end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ . \\ .\\ . \\ u_N \end{bmatrix} = \begin{bmatrix} \frac{u_1}{\Delta x^2} \\ \frac{u_3-2u_2+u_1}{\Delta x^2} \\ . \\ .\\ \frac{u_N-2u_{N-1}+u_{N-2}}{\Delta x^2}\\ \frac{u_N}{\Delta x^2} \end{bmatrix} $$

E quindi i due problemi si ridurranno semplicemente a risolvere un sistema lineare. Il problema

$$\begin{cases}-u”(x) = 1,\quad x\in(0,1) \\ u(0)=u(1)=0\end{cases} $$

diventa quindi

$$ -D2\, u = \begin{bmatrix} 0\\ 1 \\ . \\ .\\ 1\\ 0 \end{bmatrix} .$$

Ecco quindi cosa otteniamo, dove la soluzione analitica con cui ho comparato quella numerica è la seguente parabola $$u_{\text{esatta}} (x)= -\frac{1}{2}x(1-x).$$

Invece il secondo problema

$$\begin{cases}u”(x)+u'(x) = 0,\quad x\in(0,1) \\ u(0)=0,u(1)=1\end{cases} $$

diventa quindi

$$ (D2+D1)\, u = \begin{bmatrix} 0\\ 0 \\ . \\ .\\ 0\\ \frac{1}{\Delta x^2} \end{bmatrix} .$$

Ecco quindi cosa otteniamo, dove la soluzione analitica con cui ho comparato quella numerica è la seguente $$u_{\text{esatta}} (x)= \frac{e-e^{1-x}}{e-1}.$$

Fisica matematica: cos’è e molte risorse per approfondirla

Cos’è la fisica matematica? Se non hai mai studiato matematica probabilmente non ne hai mai sentito parlare e non ti è chiaro dove possa concludersi la fisica e iniziare la matematica, o viceversa. Quindi questo articolo vuole aiutarti ad avventurarti in questo mondo che ho scoperto un paio d’anni fa e mi sta piacendo sempre di più, non si sa mai che con questo articolo ti venga voglia di scaricarti una delle dispense che ti suggerisco o comprarti uno dei libri elencati per approfondirla da solo 🙂 Dopotutto con gli articoli sul blog non miriamo ad insegnare nulla, ma ad incuriosire e dare gli strumenti per successivi approfondimenti personali! Ma bando alle ciance…iniziamo!

Ah dimenticavo…se non lo sai ho anche un canale Youtube e la fisica matematica sarà senz’altro uno dei miei principali interessi nei video. Se non sei ancora iscritto lo trovi qui: CANALE YOUTUBE MATHONE.

Cos’è la fisica matematica?

Per iniziare questo paragrafo ti riporto la definizione di fisica matematica che puoi trovare anche su Wikipedia perchè mi sembra molto chiara ed un ottimo punto di partenza:

La fisica matematica è quella disciplina scientifica che si occupa delle “applicazioni della matematica ai problemi della fisica e dello sviluppo di metodi matematici adatti alla formulazione di teorie fisiche e alle relative applicazioni“.

Wikipedia

Vediamo un po’ di analizzare quanto scritto qui sopra. Partendo da cosa sia la fisica si può capire abbastanza semplicemente la definizione qui sopra. Infatti fisica vuol dire, anche in termini di origini della parola, “natura” o “le cose naturali”. È quindi la branca della scienza che si occupa letteralmente di studiare i fenomeni naturali, utilizzando un formalismo matematico e degli strumenti forniti dalla matematica.

Prima di proseguire, ci tengo a dirti che se vuoi vedere il video che ho fatto su questo argomento lo trovi qui:

Questi fenomeni naturali vengono quindi osservati, misurati e poi analizzati grazie a vari strumenti matematici. L’obiettivo ultimo della fisica è quello di costruire delle relazioni tra i fenomeni naturali (dei legami astratti) e quindi essere in grado di prevedere alcuni risultati a partire da delle misurazioni concretamente effettuabili.

Bene, se ci hai fatto caso, nelle righe qui sopra ho evidenziato in grassetto i termini “forniti dalla matematica”. È proprio qui che possiamo infatti far ricadere la linea di delimitazione tra fisica matematica e fisica. Chi si occupa di fisica matematica ha sostanzialmente l’obiettivo di fornire gli strumenti, i formalismi, i metodi che poi possono essere applicati dai fisici (in genere) per analizzare un particolare fenomeno naturale.

Da un punto di vista storico, possiamo trovare la motivazione che ha portato all’interesse per la fisica matematica già dalle parole di Galileo:

Il mondo naturale va descritto con il suo linguaggio, e questo linguaggio è la matematica.

Galileo Galilei

Quindi, in parole povere, possiamo dire che la differenza tra la fisica matematica e la fisica teorica sta nella particolare attenzione che la prima pone verso il formalismo tipico della matematica per descrivere fenomeni fisici, mentre la seconda ha il chiaro obiettivo, prima o dopo, di andare a relazionarsi con la fisica sperimentale e quindi, il reale mondo osservabile.

Differenti scale studiate dalla fisica matematica

Questa sezione è parecchio importante perchè permette un po’ di classificare i vari settori della fisica matematica in base al loro oggetto di studio. Più precisamente questa classificazione sarà basata sulla “grandezza” della scala analizzata da questi rami di studio.

Vediamo un esempio che ci permette di analizzare questo molto chiaramente:

Supponi di voler descrivere come si muove un gruppo di 2 palline che, partendo da punti diversi di un tavolo da biliardo, vengono lanciate verso il centro del tavolo così da interagire l’una con l’altra.

Bene, in questo caso la dinamica si può studiare a livello microscopico, ovvero analizzando con un’equazione differenziale ordinaria la dinamica di ogni pallina, andando quindi ad ottenere un sistema di 2 equazioni, basate fondamentalmente sulla legge di Newton, chiaramente non semplici ma sempre 2 equazioni ordinarie sono. Infatti in questo caso il numero degli oggetti coinvolti è basso, per cui non è eccessivamente costoso descrivere singolarmente le dinamiche delle singole particelle.

Ecco quindi vista la parte della fisica matematica che si occupa delle scale MICROSCOPICHE. Qui ricade la meccanica razionale, che coinvolge in maniera pesante l’analisi dei sistemi dinamici ed è la parte della fisica matematica a cui mi sto appassionando maggiormente.

Andiamo ad aumentare il numero degli oggetti coinvolti.

Supponiamo di avere 150 persone, chiuse all’interno di una stanza, che al momento di un incendio devono evacquare la stanza. Capisci bene che in questo caso descrivere la dinamica di ogni singola persona sarebbe troppo costoso, infatti si dovrebbero tenere in considerazione troppi dettagli, troppe interazioni, troppe equazioni. Avremo come minimo 150 equazioni ordinarie se seguissimo un approccio microscopico, tutte vincolate a certi fattori quali “la consapevolezza che l’individuo ha di dove sia l’uscita di sicurezza” o “quanto spaventato è il soggetto” e cose del genere, non semplice nemmeno da risolvere in termini di costi computazionali una volta “messo giù” il sistema.

Ecco quindi che qui si può decidere di coinvolgere un approccio che lavora ad una scala superiore, l’approccio CINETICO o meglio l’approccio che si dedica all’analisi dei fenomeni su scala MACROSCOPICA.

In quel caso, non ci si interessa del variare della posizione allo scorrere del tempo del singolo individuo, ma si analizza la densità di probabilità associata all’evento che gli individui si trovino in una certa zona ad un certo istante temporale.

Quindi si iniziano a trattare tutte insieme le persone come una sola cosa, avremo quindi delle equazioni cinetiche che coinvolgono le variabili di velocità, posizione e densità di probabilità. Meno equazioni ma più “legate” l’una all’altra.

Se ti interessa questa classe di problemi ti consiglio di andarti a leggere qualcosa sul problema di evacquazione, sulla dinamica degli stormi di uccelli o anche sull’equazione di Vlasov Poisson di cui sto ascoltando alcune lezioni qui a Nizza, la trovi qui: https://en.wikipedia.org/wiki/Vlasov_equation .

Passiamo quindi all’ultima, ma non meno importante, scala di analisi dei problemi della fisica matematica. La scala MESOSCOPICA. In questo caso si passa dalle equazioni cinetiche alle equazioni alle derivate parziali (PDE). Lo studio di questa classe di fenomeni è basata sul vedere gli oggetti coinvolti nella dinamica come un fluido continuo.

Ti faccio un esempio. Supponi di avere un’autostrada ad una sola corsia in cui la frequenza di macchine che passano da una certa posizione è così alta da poter approssimare la sequenza di macchine come un fiumiciattolo e descrivere lo scorrere delle macchine come la variazione di densità, in spazio e tempo, del fluido. Per esempio in questo caso si parla di equazione di Burgers $\partial_t u +\partial_x(u^2/2)=0$ ma le equazioni alle derivate parziali che si possono generare sono veramente infinite.

Per esempio si può far ricadere in questa macro area della fisica matematica lo studio matematico della dinamica dei fluidi, della turbolenza, delle onde sonore e molto altro ancora.

Risorse e libri di testo consigliati per iniziare a studiarla

Eccoci finalmente alla sezione che ritengo più utile dell’articolo 🙂 Fortunatamente infatti si possono trovare molti libri e dispense ben fatte riguardo a questi temi. Chiaramente la fisica matematica è un settore ampissimo perché si interessa dei più svariati fenomeni e delle più svariate scale.

Di alcuni di questi settori so poco o nulla, per cui mi limito ad elencarti qui sotto risorse per approfondire temi che ho avuto modo di studiare personalmente in maniera più o meno avanzata. Quindi settori come la teoria spettrale per la meccanica quantistica o altri non te li riporto perché ho avuto modo di studiarli in parte ma poco rivolti alla fisica, più come uno strumento generale della matematica poi eventualmente utilizzabile per la fisica, quindi preferisco evitare.

Delle scale di cui ti ho parlato qui sopra andremo a vedere qualche risorsa riguardante i fenomeni della dinamica (rivedendo quindi in maniera più formale e rigorosa, alla luce della geometria differenziale, la meccanica classica), qualche riferimento a testi riguardanti le PDE iperboliche e i modelli matematici per le PDE della fisica in generale. Ovviamente è molto restrittivo come panorama, ma preferisco evitare di suggerirti cose che non ho studiato personalmente almeno in parte.

Sistemi dinamici e meccanica razionale

Questo è il settore che preferisco tra quelli che ti ho nominato, è molto ampio, molto visivo nelle tecniche utilizzate e spesso tratta più o meno direttamente di fenomeni che puoi vedere tranquillamente nella vita quotidiana. Di suggerimenti da darti ne avrei quindi molti ma mi limito a fornirti qualcosa di ben mirato. Partiamo dai sistemi dinamici per i quali ti lascio una playlist di video (in inglese ma fatti da un italiano 😉 ) su Youtube che è davvero chiara:

Questo è solo il primo video del corso, se clicchi sul titolo poi ti si apriranno anche le successive lezioni

Se preferisci studiare su dei libri o delle dispense eccoti accontentato/a:

  1. Introduzione all’Analisi Qualitativa dei Sistemi Dinamici Discreti e Continui (qui si punta molto sulle tecniche qualitative del ritratto di fase, che permettono di ottenere molte informazioni sul sistema in analisi senza risolvere l’equazione che lo descrive, come spesso necessario…uno dei due autori è stato mio professore di Dinamica dei Fluidi 😉 ).
  2. Una passeggiata tra i sistemi dinamici (Dispensa di Giancarlo Benettin per l’università di Padova, ho avuto modo di usarla parecchio in questi 2-3 anni)

Purtroppo non posso lasciarti la dispensa da cui ho studiato al mio corso di sistemi dinamici perché è protetta da password e preferisco evitare casini 🙂

L’analisi qualitativa, che puoi apprendere qui sopra in maniera più o meno approfondita, diventa poi fondamentale se vuoi spostarti sull’approccio newtoniano, lagrangiano o hamiltoniano verso la dinamica classica. Per studiare questi approcci ecco le risorse che mi sento di suggerirti:

  1. Dispense per il corso di Istituzioni di Fisica Matematica – prof. F. Fassò : queste ho avuto modo di consultarle parecchio quest’anno per preparare l’esame di Meccanica Analitica
  2. Questa dispensa invece non l’ho mai consultata ma mi sembra ben fatta e tratta del formalismo Hamiltoniano: Dispensa UniMi
  3. Per studiare questi temi spesso è necessario utilizzare concetti e strumenti della geometria differenziale, di libri a riguardo ce ne sono tanti ma ultimamente mi sto trovando a guardare spesso questo libro in cui si utilizzano molti esempi e rappresentazioni grafiche per cui te lo consiglio: A Visual Introduction to Differential Forms and Calculus on Manifolds.

Equazioni alle derivate parziali della fisica matematica

Come abbiamo visto nei paragrafi precedenti, non sempre per parlare di fisica matematica è sufficiente coinvolgere equazioni differenziali ordinarie, come per la meccanica razionale, spesso per analizzare la dinamica dei continui, vibrazioni, fluidi e molto altro sono necessarie equazioni alle derivate parziali. Questo è un mondo ampissimo, quindi è dura dare suggerimenti anche perché ho avuto modo di studiarle sotto vari aspetti ma chiaramente non so nulla in confronto a tutto ciò che è stato scoperto fino ad ora.

Ti do però qualche suggerimento riguardo a testi scorrevoli e che potrebbe interessarti studiare o sfogliare. Parto da un suggerimento che mi aveva dato il buon Erik ormai un anno fa, è un libro molto piacevole da leggere e consultare, in cui si parla dei modelli matematici della fisica, si analizzano le varie procedure per ricavarli e si studiano poi le equazioni ottenute da un punto di vista delle loro proprietà ed eventuali tecniche risolutive. In questo libro si spazia in tutte le principali classi di PDEs (Partial Differential Equations), guardando equazioni ellittiche, paraboliche, iperboliche e tutto ciò che ci sta intorno.

E’ in italiano ed il titolo è Equazioni a derivate parziali: Metodi, modelli e applicazioni.

Passiamo poi al classicone di questo campo di studi, non è di sicuro un testo leggero e semplice dato che generalizza, quando possibile, ad $\mathbb{R}^d$ mentre per farsi un’idea di ciò che si sta parlando spesso è utile ragionare direttamente in $\mathbb{R}^2$ per poter rappresentare quanto letto, ma comunque sto parlando dell’Evans, il libro è: Partial Differential Equations.

Tanto per dire 😉

Come per le equazioni differenziali ordinarie è raro poter risolvere analiticamente una PDE, per cui ti lascio anche un testo, in italiano, con cui mi sono trovato bene e si parla di risoluzione numerica di PDE: Modellistica Numerica per Problemi Differenziali.

Dopo chiaramente di testi da suggerire ce ne sarebbero molti altri, magari più specifici per un particolare settore o più rivolti alla modellizzazione matematica. Per questa tipologia di argomenti onestamente non mi sono mai trovato particolarmente bene con le dispense ma ho sempre preferito i libri, se proprio dovessi trovarne una, che però riguarda “solo” le equazioni e i sistemi di equazioni iperboliche, da cui ho studiato per preparare un esame in Erasmus è: Hyperbolic Conservation Laws An Illustrated Tutorial .

Sono consapevole che i libri e le dispense suggerite in queste ultime righe sono costosi e difficili, però per vedere questa tipologia di argomenti lo sforzo richiesto è parecchio alto. In realtà anche per la meccanica razionale e i sistemi dinamici lo sforzo è molto alto però per iniziare a studiarle, avendo usato delle dispense universitarie, sono riuscito a suggerirti qualche risorsa più passo a passo/introduttiva. Qui invece non ho mai trovato nulla onestamente.

Bene, spero che questo articolo introduttivo alla fisica matematica ti sia piaciuto. Ti anticipo che la lista delle risorse per approfondire questi temi la amplierò mano a mano che studierò cose nuove (e ne studierò parecchie anche solo per la tesi), inoltre questo è solo l’inizio. Infatti più avanti farò molti articoli e video dedicati a questi temi, magari più specializzati su un esempio, su un’equazione o un modello. Se ti piace come tema dimmelo con un commento qui sotto e se hai suggerimenti di ogni genere fammi sapere 🙂

6 (+1) regali di natale da fare ad un appassionato di matematica

Qualche giorno fa, sulla pagina Instagram, ho fatto la domanda che trovi qui a destra. L’obiettivo era proprio trovare qualche spunto in più per scrivere questo articolo che spero ti sia utile. Fare regali non è mai facile, per cui ho provato a raccogliere qualche idea magari un po’ originale se ti interessa sorprendere qualche amico, parente o chiunque altro sia appassionato di matematica.

Ah..prima di proseguire 😉 In tanti mi hanno detto che come regalo vorrebbero un po’ di CFU o una laurea, purtroppo però non ho alcun link da suggerirvi per comprarli ahah Però posso suggerirvi questi due articoli in cui do qualche consiglio sull’università:

  1. 8 consigli per gestire al meglio l’università di matematica
  2. Libri di testo consigliati per l’università

Ho deciso di organizzare la lista in 6 consigli principali e un settimo aggiuntivo (ecco il perché del +1 nel titolo) che a tanti non sarà utile ma, a seconda dell’età dell’interessato, so che potrebbe esserlo e lo confermano anche i numerosi suggerimenti che ho ricevuto alla domanda qui a destra.

Inoltre ti ricordo che se non segui ancora la pagina Instagram la puoi trovare qui: @mathoneig .

Nella pagina posto ogni giorno una foto con descrizione che ha l’obiettivo di divulgare qualche tema particolare e verso sera troverai anche un meme divertente, per chiudere in allegria la giornata. Ok, quindi cominciamo con i suggerimenti!

1. Libri divulgativi

Partiamo con il consiglio più scontato ma che sono sicuro sarà di grande impatto. Spesso succede che chi è appassionato di matematica lo sia perché gli piace studiarla, gli piace provare a costruire nuove idee e dimostrazioni, ma accade anche molto frequentemente che non abbia mai letto libri divulgativi o davvero molto pochi.

Questo può accadere per vari motivi, primo tra i quali il fatto che la divulgazione sia sottovalutata rispetto alla formazione tecnica. Certo, se vuoi capire nuovi settori della matematica e diventare esperto in quelli non puoi contare di farlo solo leggendo libri divulgativi, ma secondo me questi hanno un grande potere: sanno rendere semplici cose complicate e soprattutto incuriosire verso aspetti della matematica che magari non si conoscono nemmeno.

Per cui come primo punto di questa lista DOVEVO iniziare con i libri divulgativi. Ora te ne suggerirò tre in particolare, però qualche riga più in basso metto il link ad un articolo che avevo scritto in cui ne sono raccolti 50.

Se ti interessa acquistarne qualcuno, ci tengo a farti sapere che Amazon ha appena lanciato Prime Student, l’abbonamento Prime per gli studenti: tutti i benefici di Amazon Prime, ma a metà prezzo – solo EUR 18,00 all’anno.

Non è abbastanza? Hai un periodo d’uso gratuito di 90 giorni. Ti consiglio di sfruttarlo soprattutto se hai intenzione di leggere di più o fare i regali di natale http://bit.ly/sconto_studenti

Prima di iniziare con la lista però, ti lascio una breve puntata di podcast in cui ti parlo del perché, secondo me, leggere libri di divulgazione sia una gran cosa in quanto può aiutarti a riavvicinarti alla lettura e conoscere molte cose nuove riguardo la matematica in maniera leggera, per poi magari approfondirle:

Ecco la lista dei tre principali consigli che mi sento di darti. Ah..per semplicità quando scrivo nei paragrafi qui sotto farò finta che tu voglia farti un regalo, quindi parlo direttamente a te. Se stai cercando qualcosa per un amico, parente o chiunque altro cerca di valutare le cose che ti dico rispetto a lui/lei ovviamente 😉

Altra premessa, tutti i link ai libri qui sotto (e ai prodotti che si trovano su Amazon) sono link di affiliazione, per cui se acquisti direttamente da quelli non spenderai nulla in più ma mi verrà riconosciuta una percentuale, quindi senza alcuno sforzo e spesa aggiuntiva starai anche sostenendo il progetto Mathone e per questo ti ringrazio 😉

Apologia di un matematico

Se è un po’ che non leggi ma ti piacerebbe iniziare a scoprire il mondo della divulgazione e vedere se faccia per te, questo è sicuramente il libro da cui iniziare. Si legge in un pomeriggio, è scorrevole ed è molto ben scritto a mio parere. E’ un breve libro scritto da Hardy sul finire della sua vita, dove ha cercato di dare un senso a ciò che ha fatto per tutta la sua carriera: matematica.

Vuole infatti difendere (apologia vuol dire “difesa”) la matematica, dando spiegazioni dietro al suo motivo di esistere o di essere studiata. Ti consiglio vivamente di leggerlo 🙂

Se vuoi, ti lascio qui il link di Amazon: Apologia di un matematico

Il flauto di Hilbert

Questo libro e il successivo li ho entrambi iniziati ma non ho mai avuto il tempo di finirli, non perchè fossero noiosi (per nulla) ma perché fatalità li avevo presi entrambi in biblioteca in periodi molto impegnati, per cui non ho avuto proprio tempo di finirli. Mi prometto però di leggerli a breve perché sono consigliati da chiunque sia davvero appassionato di divulgazione e, a quanto posso dire dalle prime 50-70 pagine che ho letto, sia questo che il successivo meritano sul serio.

Ovviamente non posso lasciare alcuna recensione, se non dirti che il Flauto di Hilbert è un libro di storia della matematica davvero ben presentata, di scorrevole lettura. E’ più lungo del precedente ma vale di sicuro lo sforzo.

Se vuoi, ti lascio qui il link di Amazon: Il flauto di Hilbert

Gödel, Escher, Bach. Un’eterna ghirlanda brillante. Una fuga metaforica su menti e macchine nello spirito

Come anticipato, anche questo libro l’ho solo iniziato ma merita sul serio e per questo il prima possibile lo riprenderò per completarlo. E’ un viaggio tra matematica, arte, musica e intelligenza artificiale. Davvero un bel libro a quanto ho letto in giro e sentito da molti.

Se vuoi, ti lascio qui il link di Amazon: Gödel, Escher, Bach

Per la lista completa dei 50 titoli suggeriti, nel caso questi non ti piacciano o non ti sembrano adatti, la puoi trovare qui: I 50 migliori libri di matematica.

2. Lavagna a muro

Questa è stata una grande aggiunta alla mia camera quasi un paio d’anni fa. Certo, serve spazio, ma se hai un po’ di muro libero (o sei disposto a liberarlo), ti assicuro che studiare dimostrazioni o risolvere esercizi alla lavagna è un’altra cosa. Un lato molto positivo di avere una lavagna a muro è che nei pomeriggi di studio intenso, magari poco prima di un esame, ti sarà pesante stare ore e ore seduto a studiare o provare a riscrivere dimostrazioni, quindi è molto utile (per la mia esperienza) alternare momenti seduto a momenti in cui ti alzi, continuando a ripassare ma questa volta scrivendo alla lavagna.

Io l’ho presa anche per fare video su Youtube, che da gennaio 2020 riprenderanno ad uscire (con regolarità) quindi ti consiglio intanto di iscriverti al canale da qui: Mathone Video.

A dirti la verità io non l’ho comprata su Amazon ma, grazie ad un amico, sono riuscito a recuperare una lavagna che era stata restituita perché leggermente difettosa. Ma prima di avere questa occasione mi sono informato parecchio sulle migliori possibilità che Amazon aveva da offrire e quindi qui di seguito ti riporto le 3 sulle quali al tempo ero indeciso, soprattutto leggendo le descrizioni e le recensioni lasciate dai clienti nei commenti.

Intanto ti lascio i pennarelli che ho provato e che continuo a ricomprare quando si scaricano perché mi trovo davvero bene, li trovi qui: Pennarelli cancellabili.

Per la ragione dei pennarelli più economici, ho optato per una lavagna bianca. Sarebbe molto figo anche avere una classica lavagna nera dove si può scrivere con gessi o pennarelli a gesso liquido (che costano un botto), però i gessi li ho provati per un paio d’anni in camera (avevo attaccato un foglio di lavagna adesiva alla scrivania che trovi qui: Lavagna adesiva) ma dopo un po’ la camera diventava invivibile per sporco e polvere di gesso ovunque 😉

Passiamo quindi ai consigli sulle Whiteboards:

AmazonBasics – Lavagna magnetica bianca, cancellabile a secco, con supporto porta-pennarelli e bordi in alluminio, 120 cm x 90 cm:

Se vuoi guardare le recensioni e descrizioni su Amazon clicca qui: LINK AMAZON.

Nobo 1903772 Lavagna magnetica cancellabile a secco, Kit di montaggio incluso, Bianco, 58.5 x 43 cm:

Se cerchi qualcosa di più piccolino, economico ma comunque funzionale questa potrebbe essere giusta per te: LINK DI AMAZON.

Bi-Office Maya – Lavagna Magnetica Bianca, 120 x 90 cm, Con Cornice In Alluminio, Superficie Magnetica Acciaio Laccato:

Questa mi è sempre piaciuta, era quella per cui propendevo maggiormente e la puoi vedere qui: LINK AMAZON.

3. Accessori matematici

Questa è la sezione per cui ho ricevuto più messaggi. Me ne sono arrivati alcuni in cui si parlava di sciarpe a forma di Nastro di Moebius, cappelli a forma di Bottiglia di Klein, lampade a forme particolari, soprammobili curiosi per un appassionato di matematica e chi più ne ha più ne metta.

Ho quindi fatto una ricerca su Google riguardo alcuni accessori che potrebbero piacere ad un matematico e alcuni sono davvero fighi, ti metto qui sotto per ognuno di questi 5 link per andare a guardarlo ed un’immagine. Sono tutti cliccabili e se hai qualche ulteriore aggeggino da suggerire sarebbe molto interessante se lo scrivessi sotto all’articolo in un commento 😉

Tutti questi li puoi trovare su Amazon perché ho pensato anche ai tempi di spedizione più ragionevole, se invece sei disposto ad aspettare anche 5-6 settimane di consegna, ho trovato questo negozio di gadget molto ricco che però, spedendo dall’Inghilterra, mi sono ben guardato dal citarlo qui sotto perché le attese salgono parecchio. Ma se può interessarti ecco anche quel negozio: https://mathsgear.co.uk/

1. Forma per dolci a forma di PI Greco

Questo devo ammettere che è una genialata, per una bella torta a tema matematico ci sta perfettamente: STAMPO PER TORTA.

2. Tazza bianca per il caffè o il tè a tema matematico

Ecco il link di una tazza che ho creato apposta per noi appassionati di matematica 😉 : LINK ALLA TAZZA.

3. 3D Illusione Lampada Bottiglia di Klein Luce notturna USB 7 colori LED

Ecco una delle cose che mi avete suggerito maggiormente nella storia di Instagram, devo ammettere che non è male l’idea di averne una in camera 😉 La trovi qui: LINK AMAZON.

Stando a tema bottiglia di Klein, puoi trovare anche questa, un po’ più sobria ma sempre bella: STAMPA 3D.

4. Orologio a tema matematico

Qui va a gusti, o piace o non piace, però anche questo in molti me l’avete suggerito su Instagram per cui, perché non metterlo? Lo puoi trovare qui: LINK OROLOGIO.

5. Pendoli sincronizzati

Questo è davvero bello, di test ne potete fare un mondo e ti lascio qui sotto un video sulla sincronizzazione di questi pendoli da cui potrete prendere spunto per divertirvi…ah il link è qui: LINK PENDOLO

4. Rompicapo in legno (e non)

Questa sezione non mi è stata suggerita da nessuno su Instagram, con mia gran sorpresa in realtà. Spesso a chi piace la matematica piace ragionare, piacciono i problemi, gli indovinelli e…i rompicapo! Perché no!

Io non ne ho testati molti di rompicapo ma nel momento in cui me ne si presenta uno davanti mi intestardisco sopra e ci perdo un botto di tempo, quindi o lo riesco a risolvere o dopo un po’ mi arrendo e voglio cercare la soluzione online (il grande potere di Youtube).

Qualche anno fa avevo anche registrato un video in cui ne risolvevo uno su Youtube 😉 ora non lo trovo più quindi immagino che lo avessi cancellato poco dopo, era registrato al volo tanto per…più che altro per essere certo di sapere dove recuperare la soluzione nel caso mi fosse interessato riprovare a farlo. Da qualche parte ce l’ho ancora, sono sicuro ahah.

I rompicapo che ho in casa o che ho testato provengono tutti da mercatini che trovavo prevalentemente quando ero in vacanza, però per curiosità ho fatto una ricerca online e ho trovato una piattaforma che li vende molto interessante e seria. Mi sono anche sentito con il proprietario e devo dire che si vede proprio che ci tiene a quel sito e ai rompicapo 🙂

Se può interessarti l’idea di regalare o regalarti un rompicapo in legno ( e non ) ti consiglio di dare un’occhiata al loro sito: https://www.logicagiochi.com/it/prodotti/rompicapo-in-legno .

Ti lascio qui sotto l’immagine di un paio di rompicapo che ho testato:

Di questo avevo fatto la video risoluzione, è una figata 😉 Si chiama Rompicapo Evasione

5. Maglietta con stampa matematica

Di magliette con meme, citazioni e immagini divertenti sulla matematica se ne trovano un’infinità online e, se ti piace la matematica e vuoi vantartene, perché non prendersi una maglietta che magari in pochi sono in grado di capire? 😉

A dirti la verità ogni tanto mi viene anche in mente di creare un negozio online del genere con prodotti e magliette matematiche, magari più avanti lo faccio dai 🙂 Se ti piacerebbe magari scrivimelo nei commenti e dammi qualche consiglio che mi farebbe di sicuro comodo!

Siccome non devo certo stare qui a presentarti e spiegarti cosa sia una maglietta sulla matematica, ti lascio qui sotto le immagini cliccabili di alcune magliette simpatiche, inoltre dal link che trovi qui potrai anche accedere alla ricerca “maglietta matematica” su Amazon, te l’ho preparata nel caso ti interessi la tipologia 😉 : http://bit.ly/magletteMate

6. Abbonamento brilliant.org

In pochi conoscono brilliant.org (con questo link hai il 20% di sconto) ma questo è un sito che consiglio sempre quando ne ho l’occasione. E’ ricco di sfide, corsi, indovinelli e cose divertenti da scoprire. E’ una piattaforma dedicata all’approfondimento di matematica, fisica, informatica e molto altro ed il tutto è fatto in maniera coinvolgente e divertente.

La piattaforma consente di accedere ai contenuti anche in maniera gratuita ed io faccio così quando ho tempo, non ho mai testato l’abbonamento a pagamento onestamente. Ma a quanto ho potuto leggere online, vedere su Youtube e a quanto dicono sulla loro pagina web direi che per uno che ha del tempo libero ed è appassionato delle varie tematiche matematiche direi che sarebbe un bel regalo da ricevere.

Per cui se non conosci il servizio/piattaforma ti lascio qui sotto il video introduttivo al corso sulla relatività, giusto per farti un’idea del loro bello stile , mentre più in basso troverai un link per andare a vedere la piattaforma ed eventualmente regalare l’abbonamento a qualcuno (anche a te se ti va 😉 ). Qui ti dico chiaramente che non ho alcuna affiliazione, te lo consiglio semplicemente perchè lo trovo sul serio un bel modo di apprendere e mettersi alla prova.

Ecco il link al sito di brilliant: https://brilliant.org/ (con questo link hai il 20% di sconto)

(+1) Calcolatrice grafica

Il motivo per cui ho messo questa voce come punto aggiuntivo (+1) è perché a molti probabilmente non servirebbe a nulla questo oggetto (a me per esempio, non saprei come usarla), però ho ricevuto molte risposte su Instagram in cui mi veniva detto che sarebbe molto apprezzata come regalo. Mi immagino per esempio che tanti ragazzi che dovranno affrontare la maturità quest’anno o in futuro sanno cosa farsene e come usarla 😉

Per cui semplicemente qui sotto ti riporto le 3 migliori calcolatrici grafiche in base alle Recensioni su Amazon, che sono solitamente ciò che guardo prima di un acquisto, ovviamente dopo aver sentito il parere di amici o partenti nel caso loro abbiano già usato il prodotto.

Ecco qui le 3 calcolatrici grafiche migliori secondo Amazon. Invece di mettertele in ordine di Recensioni positive, visto che sono tutte ottime da quel punto di vista, te le metto in ordine crescente di prezzo:

Casio FX-9750 GII Calcolatrice Grafica senza CAS, Ampio Display Monocromatico a 8 Righe, 61kB RAM, Blu Scuro

Ecco il link di Amazon per scoprire i dettagli di questo modello: LINK AMAZON.

Casio FX-CG50 Calcolatrice Grafica senza CAS con Display a 65.000 Colori, Grafici 3D e Alimentazione a Batteria

Ecco la pagina Amazon del prodotto: LINK AMAZON.

Texas Instruments TI-Nspire CX – Calcolatrice Grafica Scientifica Schermo Colori Con Touchpad

Ecco il link di Amazon per le recensioni: LINK AMAZON.

Con ciò la lista dei consigli termina qui, spero di averti dato qualche spunto interessante per fare o farti un bel regalo. Se pensi che questo articolo possa piacere a qualche tuo amico condividilo, basta anche una storia con lo screen all’articolo taggando la pagina @mathoneig 😉 su Instagram!

Spazio di Hilbert (PARTE 1) : concetti base e cenni storici

Magari ti è già capitato di sentire nominare Hilbert, ma a meno che tu non abbia già seguito un corso di analisi funzionale o qualcosa di analogo, probabilmente non sai cosa sia uno spazio di Hilbert.

Andremo quindi alla scoperta di questi particolari spazi, vedendone un po’ di storia, una caratterizzazione formale e rigorosa, le principali proprietà, alcuni esempi e per finire introdurremo l’importante concetto di Serie di Fourier generalizzata parlando di proiezioni.

In questo articolo lascerò da parte gli ultimi tre punti di questa lista, “limitandomi” quindi a introdurre alcuni concetti base e a fare un preambolo storico, perché altrimenti verrebbe troppo lungo. Termineremo quindi questo percorso alla scoperta degli spazi di Hilbert in un secondo episodio che scriverò tra non molto. Se vedo che sarebbe troppo lungo anche il secondo non si sa mai che lo spezzi in un ulteriore terzo, tanto di cose da dire ce ne sarebbero una marea 😉

Di strada da fare quindi ne abbiamo parecchia, ma cercherò di renderla il più scorrevole e piacevole possibile quindi, cosa stiamo aspettando?! Iniziamo con il succo dell’articolo!

Prima di iniziare ti lascio una piccola legenda della notazione matematica che userò, e che è usata classicamente, per rendere il testo più scorrevole (nel caso tu non ci fossi già abituato):

  • $v\in V$ vuol dire che l’elemento $v$ appartiene all’insieme $V$
  • $\exists x\in X$ significa che esiste una $x$ nell’insieme $X$
  • $\forall x\in X$ sta ad indicare per ogni $x$ dell’insieme $X$.

Definizioni e concetti base che useremo per scoprire gli spazi di Hilbert

Per poter parlare di spazi di Hilbert, è necessario che alcuni concetti siano noti, vediamo quindi di sintetizzarli in questo paragrafo 😉 . Non voglio fare sbrodoloni inutili in questa sezione, per cui tutte queste nozioni sono organizzate qui sotto in maniera sintetica ma più che sufficiente per capire il seguito dell’articolo e soprattutto le prossime puntate.

Spazio vettoriale su $\mathbb{R}$

Diciamo spazio vettoriale rispetto al campo $\mathbb{R}$ un insieme $V$, i cui elementi saranno chiamati vettori, equipaggiato di due operazioni

$+ : V\times V\rightarrow V$ e $* : \mathbb{R}\times V \rightarrow V$ tali che soddisfino le seguenti proprietà:

  • $(V,+)$ è un gruppo abeliano, ovvero:
  1. Esiste un elemento neutro $0_V$ rispetto a $+$, quindi esiste $0_V$ tale che $a+0_V=a\,\forall a\in V$.
  2. Esiste un elemento inverso rispetto a $+$, quindi esiste un $\bar{a}$ tale che $a+\bar{a}=0_V\,\forall a\in V$.
  3. L’operazione $+$ è associativa, ovvero $(a+b)+c=a+(b+c)$, $\forall a,b,c\in V$.
  4. Vale la proprietà commutativa (perché è abeliano): $a+b=b+a$, $\forall a,b\in V$.
  • Vale la proprietà distributiva tra $*$ e $+$:
  1. $k*(a+b) = k*a + k*b$, $\forall a,b\in V,\,k\in\mathbb{R}$.
  2. $(k+m)*a = k*a + m*a$, $\forall k,m\in\mathbb{R},\,a\in V$.
  • Proprietà di neutralità
  1. Se $1_{\mathbb{R}}*k = k\,\forall k\in\mathbb{R}$, allora deve valere che $1_{\mathbb{R}}*a=a\,\forall a\in V$.

P.S. Ci tengo a sottolineare che le due operazioni $+$ e $*$ non sono necessariamente le classiche addizione e moltiplicazione che siamo abituati a usare con i numeri reali. Si possono definire le più svariate operazioni sullo spazio $V$, purché la terna $(V,+,*)$ soddisfi le proprietà elencate qui sopra 🙂 . D’ora in poi parleremo di spazio vettoriale $V$ per denotare questa terna, quindi si sottintende che esso sia equipaggiata di due operazioni come sopra.

Prodotto scalare

Dato uno spazio vettoriale $V$ possiamo introdurvi un prodotto scalare, che è un’operazione tra elementi $v,w\in V$ che soddisfa alcune proprietà. Vediamo quindi come definirlo:

Un prodotto scalare sullo spazio vettoriale $V$ è un’operazione $\langle\cdot\,,\,\cdot\rangle : V\times V\rightarrow \mathbb{R}$ tale che

  1. $\langle v,v \rangle \geq 0$ per ogni $v\in V$, ovvero è un’operazione definita positiva, in particolare è $=0$ se e solo se $v=0_V$.
  2. Sia simmetrica, ovvero $\langle v,w\rangle = \langle w,v\rangle$ per ogni $v,w\in V$.
  3. Sia bilineare, data la simmetria però basta la linearità rispetto al primo termine:
  • $\langle kv,w \rangle = k\langle v,w\rangle$ per ogni $k\in\mathbb{R}$ e $v,w\in V$.
  • $\langle v+v’,w\rangle = \langle v,w \rangle + \langle v’,w\rangle.$

Si dice il prodotto scalare essere degenere, e quindi non ben definito, se esiste un vettore $w\neq 0$ tale che

$\langle v,w \rangle = 0$ per ogni $v\in V$, ovvero un vettore $w\in V$ perpendicolare a tutti gli altri vettori di $V$.

Infatti il concetto di prodotto scalare, deve essere ricondotto da un punto di vista geometrico al concetto di proiezione ortogonale. In particolare quando si calcola $\langle v,w\rangle$ non si sta altro che cercando la lunghezza della proiezione di $v$ lungo $w$ (o viceversa) rispetto ad una particoalre proiezione.

Questo è un classico esempio dove lo spazio vettoriale usato è $\mathbb{R}^2$ e la proiezione standard, quella basata sul prodotto scalare euclideo.

Un prodotto scalare è in grado di definire una norma, ovvero una nozione di lunghezza, sullo spazio $V$. Per farlo si può semplicemente procedere così: $||v|| = \langle v,v \rangle ^{\frac{1}{2}}$ per ogni $v\in V$. L’idea dietro a questa definizione e di definire la norma come la lunghezza della proiezione di un vettore su se stesso.

Prima di proseguire, vediamo un’importante proprietà che segue da quelle che caratterizzano il prodotto scalare: la disuguaglianza triangolare.

Questa si può esprimere così: $||u+v||\leq ||u|| + ||v||$ per ogni $u,v\in V$. In termini pratici, hai già visto di sicuro questa disuguaglianza quando hai studiato i triangoli. Ricordi infatti che la somma delle lunghezze di due lati è sempre maggiore del terzo singolarmente? Ecco, se ogni lato lo vedi come un vettore tutto torna 😉

Se vuoi approfondire il concetto di prodotto scalare ti consiglio questa pagina: Prodotto scalare.

Proiezione ortogonale

Ci siamo, vediamo l’ultimo concetto per poi passare a parlare sul serio di spazi di Hilbert! 🙂 Se ti è capitato di studiare un minimo la geometria nello spazio euclideo $\mathbb{R}^n$, anche solo in $\mathbb{R}^2$ è sufficiente, certo saprai che in questo spazio è ben definito un prodotto scalare.

In particolare lo possiamo definire come segue presi due vettori $\vec{x},\vec{y}\in\mathbb{R}^n$, dove $\vec{x}=(x_1,x_2,…,x_n)$ mentre $\vec{y}=(y_1,y_2,…,y_n)$:

$\langle (x_1,x_2,…,x_n), (y_1,y_2,…,y_n)\rangle := x_1\cdot y_1 + x_2\cdot y_2 + … +x_n\cdot y_n = \sum_{i=1}^n x_i\cdot y_i.$

Grazie all’esistenza di un prodotto scalare possiamo anche parlare di proiezione ortogonale , che in termini intuitivi si equivale al concetto di ombra. Infatti ti sarai certamente accorto che, nella realtà, quando un oggetto come una matita è posto in posizione inclinata sopra una superficie, con una luce che lo illumina dall’alto, sul tavolo potrai vedere un’ombra. Bene, da un punto di vista matematico quest’ombra si chiama la proiezione ortogonale del vettore matita sul piano del tavolo 😉 .

In alternativa potresti anche proiettare un vettore su un altro vettore, rappresentando il concetto intuitivamente nello stesso modo.

Nell’immagine qui sopra non ho una luce perfettamente sopra la penna, ma il concetto penso sia chiaro. Infatti nonostante la luce venga un po’ in diagonale, abbiamo un ombra sul tavolo. Questa non sarà una proiezione ortogonale ma qualcosa di leggermente diverso, ma non curiamocene visto che non è questo il tema dell’articolo. La foto qui sopra vuole solo essere da immagine per capire ciò di cui stiamo parlando 😉

Per concludere, come si calcola la proiezione ortogonale (che d’ora in poi chiamerò solo con proiezione) di un vettore $v=(v_1,…,v_n)\in\mathbb{R}^n$ su un vettore $w=(w_1,…,w_n)\in\mathbb{R}^n$?

Beh, è molto semplice! Per trovare la lunghezza del vettore di proiezione basta fare il prodotto scalare tra i due vettori, poi basta trovare la direzione lungo la quale si trova $w$ e quindi moltiplicare la lunghezza della proiezione per questo vettore unitario di direzione 😉 Ma vediamo un po’ di conti che sono sicuro che ti chiariranno il concetto. Qui sotto denoteremo con $P_w(v)$ il vettore proiezione ortogonale di $v$ lungo il vettore $w$.

$P_w(v) = \langle v,w\rangle \frac{w}{||w||} = \frac{1}{\sqrt{w_1^2+…+w_n^2}}(w_1,…,w_n) \sum_{i=1}^n v_i\cdot w_i $.

Dove all’inizio vedi il vettore $w’= \frac{w}{||w||} $, intendo il vettore unitario di direzione lungo la quale vive il vettore $w$, infatti ho usato il vettore $w$ è l’ho diviso per la sua norma, così che $||w’||=1$. Chiaramente, visto che stiamo parlando di $\mathbb{R}^n$ mi è venuto naturale spiegarti questi concetti usando norma euclidea e il classico prodotto scalare euclideo, ma si può fare lo stesso discorso con un qualunque prodotto scalare e la relativa norma indotta. Infatti la prima uguaglianza qui sopra vale ancora, poi quando ho esplicitato i conti invece va sostituita la corretta norma e prodotto scalare.

Ci siamo! Ora siamo pronti per addentrarci negli spazi di Hilbert, che sostanzialmente ambiscono a definire questi strumenti su spazi più generali, a dimensione infinita in particolare. Ma non spaventarti, pian piano ti sarà tutto più chiaro.

Ti faccio una doverosa premessa…la parte storica qui sotto nomina parecchi concetti avanzati che provo a spiegarti ma se non li hai mai sentiti immagino sarà di difficile lettura. Per cui se ti interessa sapere cosa si nasconde nella storia dietro il concetto di Spazio di Hilbert ti consiglio di fare un tentativo, magari non capirai tutto ma in linea generale lo sviluppo e le motivazioni dietro questo oggetto matematico ti saranno chiari 🙂

Altrimenti, se al momento non hai voglia di cose difficili o se non ti interessa la parte storica e preferisci aspettare che esca la seconda puntata sulle proprietà e sugli esempi, ci possiamo salutare qui e amici come prima .

Un po’ di storia sugli spazi di Hilbert

Prima dello sviluppo del concetto di spazio di Hilbert, furono ottenute altre generalizzazioni degli spazi Euclidei $\mathbb{R}^n$, che erano note ed utilizzate sia da fisici che matematici. In particolare, l’idea di uno spazio lineare astratto maturò e ricevette sempre più interesse verso la fine del 19° secolo.

Questo spazio a cui si arrivò, era uno spazio i cui elementi potessero essere sommati tra loro e moltiplicati per uno scalare (un numero reale o complesso per esempio) senza però doverli necessariamente associare con il classico vettore geometrico di $\mathbb{R}^n$. Un esempio classico sono gli spazi di matrici, che godono tranquillamente di queste proprietà ma non sono intuitivamente associabili all’immagine di un vettore (in realtà si può fare questa associazione, ma non è necessaria per poter lavorare con le matrici).

Anche altri oggetti studiati dai matematici a cavallo del 20° secolo, in particolare gli spazi di sequenze e gli spazi di funzioni, possono essere naturalmente intesi come spazi lineari (ti ricordo che per spazi lineari, di per sè, intendiamo gli spazi vettoriali di cui abbiamo parlato prima 😉 ).

Le funzioni, per esempio, possono essere sommate tra loro e moltiplicate per una costante, e queste operazioni obbediscono alle classiche proprietà delle operazioni di somma e prodotto per uno scalare che rispettano i vettori nello spazio Euclideo.

Nel primo decennio del 20° secolo, sviluppi paralleli portarono all’introduzione degli spazi di Hilbert. Il primo di questi sviluppi fu l’osservazione, emersa quando David Hilbert e Erhard Schimidt stavano studiando le equazioni integrali (se non ne hai mai vista una ecco qui qualcosa che può esserti utile: equazioni integrali), che due funzioni quadrato sommabili a valori reali, $f$ e $g$, su un intervallo $[a,b]$ (ovvero $f,g:[a,b]\rightarrow\mathbb{R}$), ammettono un prodotto scalare:

$\langle f,g\rangle = \int_a^b f(x)g(x)dx$

che ha tutte le classiche proprietà a cui siamo abituati per il prodotto scalare dei vettori nello spazio $\mathbb{R}^n$ e di cui abbiamo parlato in generale nel paragrafo sopra.

Ah…per non spaventare nessuno, quando scrivo che una funzione è “quadrato sommabile”, intendo che l’integrale del quadrato della funzione è finito:

$\int_a^b f^2(x)dx < +\infty$.

Un esempio di funzione che non è quadrato sommabile è la funzione $f(x)=\frac{1}{\sqrt{x}}$ nell’intervallo $[0,1]$, infatti si ha:

$\int_0^1 \Big(\frac{1}{\sqrt{x}}\Big)^2dx = \int_0^1 \frac{1}{x} dx = \log{1}-\lim_{x\to 0^+} \log{x} = +\infty$.

Giusto per completezza, ti dico che lo spazio delle funzioni che hanno questa proprietà si denota solitamente con $\mathcal{L}^2([a,b])$ ed è uno spazio di Hilbert se equipaggiato del prodotto scalare definito qualche riga più in su.

Schmidt sfruttò le somiglianze tra questo prodotto interno (scalare) con il classico prodotto di $\mathbb{R}^n$ per dimostrare una versione ampliata del teorema spettrale dell’algebra lineare (se non lo conosci qui trovi una bella spiegazione: Teorema spettrale) per ottenere una decomposizione di un operatore della forma:

$f(x)\rightarrow \int_a^b K(x,y)f(y)dy$

con $K$ che è una funzione continua e simmetrica di $x$ ed $y$. Questo operatore è chiamato operatore di Hilbert-Schmidt (questa non tutti la capiranno, ma va bene così: symmetric self-adjoint, smooth compact!)

Il secondo sviluppo che portò alla costruzione della nozione di spazio di Hilbert fu l’integrale di Lebesgue. Questo è un’alternativa all’integrale di Riemann che solitamente si studia ad analisi 1 e che è poi quello che si vede anche in quinta superiore 😉

Questo “nuovo integrale” fu introdotto da Henri Lebesgue nel 1904 e permise di integrare più funzioni, una classe più ampia di funzioni. Questo integrale permise, nel 1907, a Frigyes Riesz e Ernst Sigismund Fischer di dimostrare, indipendentemente, che lo spazio $\mathcal{L}^2$ di cui ti ho parlato prima è uno spazio metrico completo.

La completezza è una proprietà fondamentale di $\mathbb{R}^n$ e questo non fa che aumentare le somiglianze tra gli spazi euclidei e questa nuova tipologia di spazi che questi grandi matematici stavano introducendo. Se non conosci il termine spazio completo ti consiglio di dare una letta qui, è spiegato in modo chiaro: Spazio metrico completo.

Come conseguenza naturale del forte legame tra la geometria dello spazio Euclideo e il risultato di completezza, i risultati del 19° secolo raggiunti da Joseph Fourier (se vuoi qui trovi un articolo che avevo scritto sulla Trasformata di Fourier che è strettamente legata con ciò di cui stiamo parlando), Friedrich Bessel e Marc-Antoine Parseval sulle serie di Fourier, o comunque sulle serie trigonometriche, si generalizzarono a questi spazi più ricchi e “potenti”. Andarono così a costituire la struttura geometrica e analitica del teorema di Riesz-Fischer.

Chiudo questa serie di teoremi importanti con il riferimento a un altro che è obbligatorio citare, il teorema di Rappresentazione di Riesz. Questo, in linea pratica, dice che ogni funzione lineare

$L(\alpha v + w) = \alpha L(v) + L(w)$, $\forall \alpha\in\mathbb{R}$ o $\mathbb{C}$ e $\forall v,w\in H$

e continua definita da uno spazio di Hilbert a $\mathbb{C}$ oppure $\mathbb{R}$ (a seconda del campo su cui $H$ è spazio vettoriale), che in gergo è chiamato funzionale lineare a continuo $L:H\rightarrow \mathbb{R}\,(L\in H’)$, può essere associata ad uno ed un solo elemento $v_L$ dello spazio di Hilbert, in modo che applicare la funzione $L$ ad un vettore $w\in H$ equivale a moltiplicare questo vettore $w$ per il rappresentante $v_L$:

$L(w) = \langle v_L,w \rangle$ per ogni $w\in H$.

Se ci pensi, è un po’ come la matrice associata univocamente ad ogni funzione lineare che si vede in algebra lineare (se non conosci questo risultato, qui trovi una spiegazione molto chiara : Matrice associata a un’applicazione lineare) , solo che qui va richiesta la continuità perché, su spazi a dimensione infinita, si possono costruire funzioni lineari ma non continue 😉 .

Bene, prima di passare alle motivazioni fisiche dello sviluppo della teoria sugli spazi di Hilbert, ci tengo a dirti che quest’ultimo teorema fu dimostrato in via indipendente da Maurice Fréchet e Frigyes Riesz nel 1907.

Ah..un’ultima cosa! Ma chi ha introdotto il termine SPAZIO DI HILBERT? Il colpevole è John von Neumann, che coniò il termine spazio di Hilbert astratto nel suo lavoro sugli operatori Hermitiani illimitati. Von Neumann fu di per sé il primo a fornire una trattazione completa e assiomatica di questi spazi, prima di lui i matematici li utilizzavano ma più per interesse fisico.

Ma quindi servono a qualcosa questi spazi? Sono usati per la fisica? Proprio così, la motivazione principale che portò alla formalizzazione di questi spazi fu il fornire una struttura matematica alla meccanica quantistica. Infatti gli stati in un sistema quantistico sono vettori in un certo spazio di Hilbert.

Ma non mi dilungo oltre su questo tema, dato che Gianluca sta trattando proprio questi aspetti nei suoi articoli! Il primo lo trovi qui: https://www.mathone.it/meccanica-quantistica-1/

P.S. Questa parte storica l’ho tradotta e rielaborata a partire dalla pagina inglese di Wikipedia, che se vuoi più dettagli puoi trovare qui: Wikipedia – Hilbert Spaces

Conclusione

Perfetto, con questa parte storica direi che può dirsi conclusa una prima panoramica su questi strani oggetti, gli spazi di Hilbert. Se hai notato nel corso dell’articolo ho disseminato link per tuoi eventuali approfondimenti, perché come mi piace dire spesso, qui sul blog non abbiamo l’obiettivo di insegnare nulla ma solamente di incuriosire e dare gli strumenti per approfondire 😉

Detto ciò, se può interessarti qui sotto trovi un video davvero molto chiaro sugli spazi vettoriali astratti (è inglese) e il link a un libro di testo in cui si parla anche di questo argomento (più in generale di analisi funzionale) che magari può interessarti. Inoltre ti ricordo che questa è solo la prima puntata di due e tre che farò sugli spazi di Hilbert, quindi ti aspetto per le prossime 😉 !

Il libro che ti voglio suggerirti è un classico dell’analisi funzionale e lo trovi qui: Functional Analysis, Sobolev Spaces and Partial Differential Equations .

Il video invece è questo:

Toro (geometria) : tra ciambelle e topologia

Cos’è il toro, inteso come superficie? Beh, partiamo dalle cose che conosci di sicuro…ti piacciono le ciambelle? Perfetto, sei già a un ottimo punto di partenza, perché nelle prossime righe andremo a scoprire come definire matematicamente la forma di una bella ciambella, proprio come quella riportata nell’immagine qui sotto.

Non so se sei uno/a che analizza ciò che vede e prova a darci una spiegazione matematica o scientifica, però spesso quando mi trovo a contatto con oggetti anche comuni io ci provo e, effettivamente, quando ho provato a pensare come descrivere una palla nessun problema, un dado nessun problema, ma una ciambella?!

Mi sono trovato in una situazione simile quando ho provato a descrivere la forma delle nuvole, inutilmente chiaramente. Queste domande però mi hanno portato a scoprire l’esistenza dei frattali, sui quali puoi anche trovare un interessante articolo qui: Frattali in natura, alla scoperta di questi strani oggetti.

In questo articolo andremo a scoprire cos’è il toro, la superficie che più si addice per descrivere la tua amata ciambella che mangi a colazione. Vedremo come costruirlo, la sua equazione, come rappresentarlo in due dimensioni e anche un sistema dinamico semplice e interessante su esso definito (parleremo di biliardi).

Per cui le cose da studiare sono tante quindi…iniziamo!

Costruzione geometrica del toro

Per costruire il toro si può partire da un pezzettino di plastica o qualunque materiale abbastanza flessibile. Puoi ritagliarlo di forma quadrata o rettangolare, come la figura qui sotto.

Ora per fornire le istruzioni che ti permetteranno di ottenere il toro partendo da questo pezzettino di plastica, userò le lettere indicate nella figura qui sopra. Per cui devi andare a incollare tra loro i due lati $b$ a $b’$, ottenendo così un cilindro senza tappi, come rappresentato qui sotto:

Nel cilindro qui sopra, come puoi vedere, abbiamo identificato i due lati $b$ e $b’$, il che vuol dire che abbiamo definito una relazione di equivalenza tra due dei quattro lati del quadrato, ovvero $b\equiv b’$. Per concludere la nostra costruzione non ci resta che incollare tra loro anche i lati $a$ e $a’$, stando però attenti a non cambiare l’orientamento delle due circonferenze, ovvero senza attorcigliare il cilindro su se stesso.

Ah..una cosa importante! Se invece di mantenere l’orientamento facessi un cambio di orientamento, ovvero artorcigliassi una volta il cilindro, otterresti la bottiglia di Klein, altra superificie parecchio interessante di cui parleremo in un articolo in futuro.

Identifichiamo quindi $a\equiv a’$ e otteniamo il nostro toro come rappresentato qui sotto:

Interessante come costruzione, no?! Se ti interessa sapere come ho creato le immagini qui sopra (e anche quelle che seguiranno), ci tengo a dirti che ho usato GeoGebra, un software che se non conosci ti consiglio davvero di scoprire, è molto potente ed intuitivo. Io non lo so usare in maniera troppo spinta (si possono fare davvero delle figate assurde) ma mi basta per rappresentare situazioni e oggetti in modo da chiarirmi come sono fatti.

Detto ciò, come vedi nella figura del toro qui sopra, ho evidenziato due circonferenze e non l’ho fatto a caso. Infatti queste corrispondono ai punti in cui tu hai messo la colla sul pezzettino di plastica. Come puoi vedere una è associata all’identificazione (equivalenza) dei lati $a\equiv a’$ a l’altra relativa alla relazione di equivalenza $b\equiv b’$.

Questo ci porta evidentemente a motivare la costruzione, ben più formale e astratta, che di solito viene proposta quando si parla del toro:

Il toro geometrico è ottenuto come il prodotto cartesiano di due circonferenze: $\mathbb{T}=S^1\times S^1$

Qualsiasi libro di testo di geometria

Data la costruzione semplice che abbiamo appena fatto, risulta molto più evidente il perché di questa costruzione più rigorosa e matematica. Infatti il prodotto cartesiano non fa altro che associare a ogni fissato elemento del primo insieme, tutti quelli del secondo.

Pensa di muoverti lungo la circonferenza verticale (quella che abbiamo denotato con $a\equiv a’$) e a ciascun suo punto traccia il cerchio massimo che seziona orizzontalmente il toro. Vedi quindi chiaramente che unendo tutte queste circonferenze al variare dell’elemento fissato sul cerchio verticale, ottieni esattamente tutta la superficie torica 🙂

Il toro in fondo è una tazza…

Questo è un tema di cui sei di sicuro a conoscenza se hai studiato un po’ di topologia o geometria o segui la pagina Instagram @mathoneig (fallo se non la segui ancora, la trovi qui: Pagina Instagram 😉 ).

Partiamo dal definire cosa sia uno spazio topologico, per poi introdurci al concetto omeomorfismo così da poter capire quantomeno intuitivamente l’immagine qui sopra.

Definizione (Topologia) Dato un qualunque insieme $X$, si dice topologia su $X$ un suo qualunque sottoinsieme $T\subset \mathcal{P}(X)$ (dove con $\mathcal{P}(X)$ intendiamo l’insieme delle parti di $X$) che soddisfi le 3 seguenti proprietà:

  1. L’insieme vuoto $\emptyset$ e $X$ appartengono a $T$
  2. L’unione di una quantità arbitraria di elementi di $T$ appartiene a $T$
  3. L’intersezione di due elementi di $T$ appartiene ancora a $T$

Un generico elemento di $T$ è detto sottoinsieme aperto di $X$.

Definizione (Spazio Topologico) Si dice spazio topologico una coppia $(X,T)$ dove $X$ è un insieme qualsiasi e $T$ è una topologia su $X$, secondo la precedente definizione.

Facciamo due esempi semplici di spazio topologico, ovvero la retta reale $\mathbb{R}$ dotata della classica distanza euclidea e l’insieme $A=\{1,2,3,4\}$ dotato di un’opportuna topologia che ora vedremo.

Sulla retta reale possiamo definire una topologia basata sugli intervalli $(a,b)\subset\mathbb{R}$. Infatti l’intersezione di due di questi è ancora un intervallo. Unione arbitraria di intervalli è ancora un intervallo e chiaramente l’insieme vuoto e anche $\mathbb{R}$ sono intervalli.

Magari è utile spendere due parole sul perchè $\mathbb{R}$ sia un intervallo, ma è abbastanza semplice. Si può infatti scriverlo come unione numerabile di intervalli ed è quindi un intervallo, ecco qui come si può fare:

$\mathbb{R} = \bigcup\limits_{n=1}^{+\infty} (-n,n)$,

per cui abbiamo mostrato che questa definisce una topologia su $\mathbb{R}$ e la possiamo scrivere come segue:

$T=\{(a,b): a<b, a,b\in\mathbb{R}\}$

Passiamo poi all’insieme $A$. Qui possiamo definire una topologia data dal seguente insieme:

$T=\{\emptyset,\{1,2,3,4\},\{1,2\},\{3,4\}\}$.

Infatti se tu guardi, l’intersezione di due elementi sta ancora in $T$, allo stesso modo la loro unione e gli insiemi banali appartengono all’insieme.

Una volta definito cosa vuol dire essere uno spazio topologico, vediamo quando due spazi topologici si possono dire omeomorfi:

Definizione (Omeomorfismo) Dati due spazi topologici $(X,T_1)$ e $(Y,T_2)$, si dice omeomorfismo tra $X$ e $Y$ una funzione continua $f:X\rightarrow Y$ che sia anche biiettiva e la cui inversa $f^{-1}:Y\rightarrow X$ è ancora continua.

Non voglio spaventarti inutilmente, infatti ecco una definizione molto intuitiva di omeomorfismo: due oggetti si dicono omeomorfi se, nel caso fossero fatti di gomma malleabile, fosse possibile rimodellare il primo oggetto per ottenere il secondo senza però eseguire operazioni come lo strappo o il taglio.

Ecco perché la topologia è chiamata geometria del foglio di gomma 😉

Bene, ora penso ti sia chiaro il senso dell’immagine qui sopra, infatti da un punto di vista topologico una tazza da caffè e una ciambella sono la stessa cosa. Su questi oggetti si è solito utilizzare la topologia dello spazio $\mathbb{R}^3$ nei quali essi vivono e sono immersi, ma non è importante approfondire questo concetto al momento, se però ti interessa lascia un commento all’articolo dicendomelo che così ci scriverò un articolo in futuro.

Giusto per non farci mancare nulla, rimanendo sul tema topologia faccio una piccola parentesi per parlarti del buco della ciambella 😉

Intuitivamente si può capire come la presenza di buchi nelle superfici, viste come spazi topologici, sia un invariante topologico, ovvero qualcosa che non cambia tra spazi che sono tra loro omeomorfi.

Infatti, come vedi, la tazza ha un buco nel manico, mentre la ciambella ha un buco al centro. In termini più formali i buchi, per superfici orientabili(e quindi più in generale spazi topologici con particolari proprietà), vengono caratterizzati da ciò che è detto genere di una superificie, che nel caso del toro e della tazza è $g=1$.

Ma non voglio dilungarmi oltre su questo tema, se può interessarti il concetto di genere e la famosa formula di Eulero, ecco qui un bel link di approfondimento: Caratteristica di Eulero

Ah…se possono interessarti questi temi nella mia tesi triennali li avevo spiegati abbastanza in maniera estesa, la puoi scaricare da qui: Tesi Triennale : Una panoramica sulla teoria ergodica e i biliardi.

Equazione del toro come superficie $\mathbb{T}\subset\mathbb{R}^3$

Per rappresentare il toro nel paragrafo qui sopra ho usato un’equazione in forma parametrica perché molto più comoda (o comunque di intuitiva comprensione), ma ora vedremo diversi modi per definire il toro in termini di espressione matematica.

In questo paragrafo andremo a vedere l’equazione parametrica e l’equazione cartesiana del toro. Partiamo da quella parametrica che, secondo me, è più facile da ricavare partendo dalla definizione di toro che abbiamo dato poche righe più in alto.

Supponiamo che $r$ sia il raggio della circonferenza $a\equiv a’$ che abbiamo rappresentato sopra e che $R$ sia il raggio della circonferenza dove vivono i centri delle circonferenze del precedente tipo, ovvero quella in mezzo alla ciambella 🙂 . Bene, se noi vogliamo individuare un punto sulla prima delle due circonferenze, è chiaro che basta fissare un angolo $v\in[0,2\pi)$ e siamo a posto, analogamente per i punti sulla seconda circonferenza, per i quali possiamo usare un altro angolo $u\in[0,2\pi)$.

Cosa vuol dire? Vuol dire che per ogni punto della superficie del toro possiamo univocamente associare una coppia di angoli $(u,v)\in[0,2\pi)\times[0,2\pi)=S^1\times S^1$, ovvero la parametrizzazione che andremo a definire tra poco è una funzione di questa forma:

$\varphi: [0,2\pi)\times [0,2\pi) \rightarrow \mathbb{T}\subset \mathbb{R}^3 $ dove $\varphi(u,v) = (x(u,v),y(u,v),z(u,v))$.

Vediamo ora come si può ottenere intuitivamente la seguente parametrizzazione, che è proprio l’equazione parametrica classica del toro

$\varphi(u,v) = ((R+r\cos{v})\cos{u},(R+r\sin{v})\cos{u},r\sin{u}).$

La cosa più ragionevole da fare, a parer mio, è fissare un punto sulla circonferenza verticale, ovvero un angolo $v\in[0,2\pi)$. A questo punto se noi proiettiamo sul piano $x-y$ la circonferenza orizzontale definita in corrispondenza di quel punto, otteniamo una circonferenza centrata nell’origine e di raggio opportuno, come puoi vedere in figura qui sotto:

Ora possiamo vedere come si può descrivere questa circonferenza rossa e poi possiamo lavorare sulla rimanente componente lungo $z$. Di sicuro essendo una circonferenza orizzontale, andremo ad utilizzare l’angolo $u$ e quindi il tutto sarà della forma $(\rho(v)\cos{u},\rho(v)\sin{u},0)$, dove dobbiamo però trovare il corretto raggio $\rho(v)$ che è chiaramente dipendente in qualche modo dall’angolo della circonferenza sulla verticale $v$.

Nel grafico qui sopra possiamo vedere, visto che ho tolto il toro, come ricavarci ciò che ci serve ovvero $\rho(v)$. Infatti ci basta calcolare la lunghezza del segmento $\bar{AB}$ e sottrarla ad $R$:

$\overline{AB} = r\cos{\beta} = r\cos{(180-v)} = -r\cos{v}$

segue che $\rho(v) = R+r\cos{v}$. Eccoci quindi ad aver parametrizzato la circonferenza proiettata sul piano $x-y$, ottenendo questa espressione:

$\tilde{\varphi}(u,v) = ((R+r\cos{v})\cos{u},(R+r\cos{v})\sin{u},0)$.

Ma ora è praticamente fatta, infatti ci basta “tirare su” la nostra circonferenza sul corretto piano $z=c(v)$. Ma questo piano lo possiamo vedere facilmente dal grafico che ho riportato qui sopra. Infatti è lo stesso dove vive il segmento $\overline{AB}$!

Questo piano è $z=r\sin{\beta} = r\sin{v}$. Ottimo, abbiamo ora l’intera parametrizzazione, come desiderato:

$\varphi(u,v) = \tilde{\varphi}(u,v) + (0,0,r\sin{v}) = ((R+r\cos{v})\cos{u},(R+r\cos{v})\sin{u},r\sin{v})$

Per concludere questa sezione, vediamo l’equazione cartesiana senza ricavarla, poi andremo a verificare che la forma parametrica soddisfa l’equazione cartesiana per completezza. In giro sul web e nei libri è più probabile trovare questa formula cartesiana ricavata piuttosto che quella parametrica, ecco perché ho deciso di fare la scelta opposta 😉

Il toro può essere definito implicitamente come il seguente luogo di punti:

$\mathbb{T} = \{(x,y,z)\in\mathbb{R}^3 : (R-\sqrt{x^2+y^2})^2+z^2=r^2\}$

Vediamo subito che questa vale nel caso della formula parametrica che abbiamo appena ricavato:

$\sqrt{x^2+y^2} = \sqrt{(R+r\cos{v})^2\cos^2{v} + (R+r\cos{v})^2\sin^2v} = R+r\cos{v}$

Quindi otteniamo $(R-\sqrt{x^2+y^2})^2=r^2\cos^2{v}$ che sommato a $z^2=r^2\sin^2{v}$ ci dà esattamente $r^2$.

Rappresentazione due dimensionale con relazione di equivalenza

Ne abbiamo fatti di progressi da inizio articolo! Complimenti se sei arrivato a leggere fin qui 😉 Mi farebbe molto piacere se lo condividessi con i tuoi amici, magari potrebbe essere interessante anche per loro!

Ora andiamo a vedere come sia possibile rappresentare il toro sul piano, utilizzando una relazione di equivalenza. Anche in questo caso ci sarà di grande utilità la costruzione che hai fatto con il pezzettino di plastica all’inizio (l’hai fatta vero?! 🙂 ).

Ricordiamo un attimo i passaggi:

  • Abbiamo identificato, incollandoli, i due lati verticali $b\equiv b’$
  • Nel cilindro senza tappi risultante, abbiamo identificato le due circonferenze chiudendo il tubo a ciambella, ovvero incollando $a\equiv a’$. Siamo anche stati attenti a non attorcigliare il tubo, altrimenti avremmo ottenuto qualcosa di molto più strano 😉

Ottimo! Rappresentare il toro sul piano, ovvero definire il cosiddetto TORO PIATTO, significa proprio indurre una relazione di equivalenza tra le due coppie di lati del quadrato di partenza.

Ti ricordo al volo che cos’è una relazione di equivalenza, nel caso non lo ricordassi o non l’avessi mai sentita nominare.

Dato un insieme $A=\{x_1,…,x_n\}$, si dice relazione di equivalenza su $A$ una relazione che soddisfa le seguenti proprietà:

  • Riflessività: Ogni elemento $x_i$ è in relazione con se stesso
  • Simmetria: Se l’elemento $x_i$ è in relazione con $x_k$, allora anche $x_k$ è in relazione con $x_i$
  • Transitività: Se $x_i$ è in relazione con $x_j$ e $x_j$ è in relazione con $x_k$, allora anche $x_i$ è in relazione con $x_k$

Un esempio semplice di relazione di equivalenza che puoi definire sui numeri naturali è la seguente: Due numeri naturali sono in relazione tra loro se sono entrambi pari o entrambi dispari. Per esercizio ti consiglio di verificare le 3 proprietà in questo caso, è una cosa veloce 😉

Bene, noi stiamo proprio andando a definire una relazione di equivalenza tra gli infiniti punti dei due segmenti $a$ e $a’$ e similarmente sui due segmenti $b$ e $b’$, incollandoli.

Ecco qui sopra rappresentato il nostro toro piatto. Come mai oltre a colorare i segmenti per rappresentare le identificazioni a 2 a 2 ho usato dei vettori (frecce) invece che dei segmenti?

Beh, semplice! Perché non vogliamo solo identificarli in quanto “insieme di punti” ma vogliamo anche mantenere l’ordine con cui sono posizionati, per evitare di ottenere poi attorcigliamenti o deformazioni strane quando si va a replicare questa identificazione incollando effettivamente i lati.

Figata, no?! Bene, questa costruzione ci sarà davvero importante qui di seguito, dove andremo a vedere qualcosina sulle superfici di traslazione e sui biliardi a tavolo quadrato. Ti dico qualche pillola di ciò che avevo studiato per la tesi della triennale, che era proprio sui biliardi e se la vuoi puoi scaricarla da qui.

Traslazione sul toro e biliardi

Ora parleremo di biliardi, si proprio quello con cui giochi con i tuoi amici il venerdì sera 😉 . Chiaramente i biliardi che andremo a vedere sono ideali, ovvero senza attrito e con urti perfettamente elastici con le pareti del tavolo, e i tavoli su cui si può giocare (da bravi matematici) possono avere le più svariate forme ed essere addirittura illimitati.

Nel campo della teoria dei biliardi dinamici la ricerca è molto attiva anche attualmente e i progressi stanno arrivando molto lentamente, perché è un campo molto complicato. Ti basti pensare che ci sono problemi aperti anche semplici, per esempio non si sa quali siano (e se esistano sempre) le traiettorie periodiche nei biliardi su un tavolo triangolare con un angolo ottuso (maggiore di $90^°$).

In queste prossime righe andremo andremo ad iniziare a studiare i biliardi quadrati, perché la dinamica su questi può essere associata ad una dinamica sul toro, interessante no?! 😉

Intanto ti suggerisco di guardare questo video che avevo fatto a riguardo qualche tempo fa:

Ma torniamo a noi!

Quindi abbiamo questo tavolo quadrato, l’idea è che se abbiamo una traiettoria che incide una parete con un certo angolo, grazie al fatto che il biliardo è ideale, andrà a rimbalzare con lo stesso angolo della parte opposta. Puoi vedere questa cosa nell’immagine qui sotto, andando a concentrarti sul primo segmento, del quadrato in basso a sinistra, $\overline{EF}$ e poi sulla parte tratteggiata.

Per esempio questa è una traiettoria periodica nel biliardo. Ma cosa sono gli altri quadrati?

Questa è una costruzione nota come Costruzione di Katok-Zemliakov. L’idea di questa costruzione è che appena una traiettoria incontra una parete e cambia direzione, possiamo riflettere il quadrato sul lato colpito dalla traiettoria e proseguire in linea retta la traiettoria invece di rifletterla nel biliardo originale.

Per costruzione quindi ogni lato di ogni copia del biliardo é identificato con esattamente un lato di un’altra copia del biliardo. Ecco che si inizia ad intravedere il toro.

Infatti se tu guardi, il lato $\overline{CB}$ è sia lato destro del primo quadrato ma anche sinistro del secondo quadrato, che sono quindi identificati come avevamo fatto con $a\equiv a’$ all’inizio dell’articolo.

Allo stesso modo abbiamo che il lato $\overline{CD}$, che è il secondo ad essere colpito dalla reale traiettoria ed è il lato superiore del primo quadrato, verrà identificato con $\overline{CD’}$, che è il lato inferiore del terzo quadrato.

Non mi aspetto di averti chiarito questa costruzione, se l’hai capita però sono contento 😉 , però la cosa importante è che capisca l’importanza di quello che stiamo facendo. Infatti in questo modo abbiamo semplificato notevolmente la dinamica della pallina del biliardo, rendendola di per sè estendibile all’infinito come una retta ed essendo poi in grado anche di risalire ai punti di contatto reali di questa traiettoria con il biliardo originale.

Per concludere ti chiedo uno sforzo mentale. Se passiamo da questa costruzione sul piano ad una visualizzazione tridimensionale, ci credi che questa retta non è altro che una curva nel toro che si ottiene incollando i lati identificati?

Henri Poincaré : L’ultimo universalista

Nel 1954 la comunità scientifica ha celebrato il 100° anniversario della nascita di Henri Poincaré. In quegli anni, la fama di Poincaré non era ai suoi massimi livelli tra i matematici e nelle menti matematiche che al tempo erano invase dallo spirito di un altro grande, David Hilbert.

Nonostante ciò, l’anniversario fu molto importante nei vari posti dove il nome o la presenza di Poincaré hanno lasciato il segno. Nel 2004, nel momento del 150° anniversario dalla sua nascita, la sua popolarità aveva raggiunto livelli molto più alti. Infatti i suoi contributi nel campo della teoria del caos e della relatività speciale hanno reso il suo nome e la sua foto famosi su molte importanti riviste scientifiche.

Nelle prossime righe, andremo ad analizzare la vita di questo grande genio, considerato l’ultimo matematico universalista, ovvero in grado di occuparsi di un’immensa varietà di temi nel campo matematico. Ah…giusto per farti capire il livello di questi universalisti (se già non avessi sentito questo termine), prima di lui c’era un altro “ragazzino” chiamato Carl Friedrich Gauss 😉 (se vuoi una biografia di Gauss trovi un nostro articolo qui: Gauss: Il principe dei matematici).

Ma bando alle ciance..andiamo a scoprire un po’ di più sulla sua vita e sui suoi importanti contributi al mondo della matematica e della scienza.

Ah dimenticavo…se vuoi che anche i tuoi amici sappiano chi era questo grande matematico (e contaminiamoli tutti questi amici che dicono che la matematica fa schifo 😉 ), fai una storia su Instagram con lo screen a questo articolo e tagga la pagina @mathoneig 🙂

Famiglia, infanzia e studi di Poincaré

Poincaré è nato il 29 Aprile 1854 a Nancy. La sua famiglia era ben nota nella regione della Lorena e aveva un albero genealogico ricco di scienziati: il suo bisnonno fu un farmacista, suo papà un neurologo e professore nella Facoltà di Medicina, suo zio si laureò all’École polytechnique e svolse il ruolo di ispettore generale di strade e ponti.

Tranne per una pericolosa malattia da lui contratta a 5 anni, l’infanzia di Poincaré assomigliò a quelle descritte nei libri di fiabe vecchio stampo. I giochi che si inventava con sua sorella e i suoi cugini rivelavano la sua immaginazione senza confini. In questi anni, inoltre, fu seguito da un insegnante privato per coltivare i suoi talenti e la sua memoria.

Già alle superiori, a Nancy nella scuola che ora è nota come Lycée Henri-Poincaré, fu presto notato come uno studente di primo livello, mostrando di essere un “mostro della matematica” negli ultimi anni di liceo. Dopo aver conseguito la maturità in lettere e scienze, diventò parecchio famoso durante i due anni trascorsi a prepararsi per il test di ammissione all’università di matematica (cosa da tutti insomma 😉 )

Si classificò come il quinto miglior studente ammesso all’ École normale supérieure e come il migliore ammesso all’École Polytechnique. Poincaré decise di optare per quest’ultima università.

In seguito andò anche all’École des Mines, dove si appassionò alla cristallografia da un punto di vista matematico, portandolo poi ad interessarsi alla teoria dei gruppi per molto tempo. Dopo essergli stato impedito di seguire le lezioni alla Sorbona, Poincaré ricevette la sua laurea in Matematica dalla Facoltà di Scienze di Parigi nell’Agosto del 1876.

Durante gli ultimi suoi due anni all’École des Mines, preparò la sua tesi di dottorato in matematica, che fu poi difesa il 1° Agosto 1879. Questa tesi mirava ad estendere alle equazioni alle derivate parziali alcuni risultati classici relativi alle equazioni differenziali ordinarie.

Carriera e personalità

Poincaré iniziò a lavorare come ingegnere minerario a Vésoul nell’Aprile del 1879. La sua carriera accademica iniziò nella facoltà di Scienze di Caen, dove insegnò analisi a partire dal 1879. Due anni dopo si spostò a Parigi sempre per insegnare analisi.

Successivamente, nel 1885, è stato nominato professore di fisica meccanica e fisica sperimentale, nel 1886 professore di fisica matematica e probabilità e in seguito nel 1896 di astronomia matematica e meccanica celeste.

I suoi primi studenti descrivevano Poincaré come un insegnante più devoto che brillante. Ecco alcune frasi che descrivono come erano le sue lezioni:

Dall’inizio, la lavagna era piena di formule, e chi seguiva le sue lezioni aveva una straordinaria sensazione di potere; le parole gli uscivano veloci e senza esitazione. Le sue lezioni erano quasi solenni.

Robert d’Adhémar

Non si può dire che Poincaré fosse un professore meraviglioso. Non aveva i doni oratori richiesti per eccellere nell’insegnamento.

Maurice d’Ocagne.

L’ho visto allontanarsi dai suoi appunti molte volte, annunciando che avrebbe provato un nuovo metodo e improvvisato davanti a noi alla lavagna.

Léon Brillouin

Poincaré, nel 1910 e 1911, era uno scienziato famoso e attraeva molta gente comune di Parigi ad ascoltarlo alle lezioni. Durante le prime lezioni, la stanza era più che piena, ma rapidamente e felicemente “il pubblico” diminuiva presto. Dalla terza lezione in poi, solamente pochi studenti e pochi dei curiosi rimanevano. Poincaré finiva sempre con delle formule semplici, tradotte in un linguaggio pieno di immaginazione, che eravamo obbligati a capire.

Louis Bourgoin

Senza perderci oltre su queste descrizioni, andiamo a parlare del suo famoso Annus Mirabilis ovvero anno meraviglioso.

Annus Mirabilis e periodo molto prolifico

La permanenza a Caen fu senz’altro un doppio annus mirabilis per Poincaré. Tra l’Agosto 1879 e l’Ottobre 1881, non solo sposò Louise Poullain d’Andecy , ma mandò anche più di 20 note alla Comptes Rendus de l’Académie des Sciences de Paris relative a tre argomenti completamente diversi:

  • aritmetica delle forme
  • teoria qualitativa delle equazioni differenziali
  • funzioni automorfe.

Il suo studio riguardo le forme quadratiche e cubiche fu ispirato dal lavoro di Charles Hermite, che al tempo era punto di riferimento della matematica francese. Lui fu professore di analisi di Henri all’École Polytechnique, e uno dei suoi risultati più rilevanti riguarda la dimostrazione del carattere trascendente del numero $e$.

Dal punto di vista delle equazioni differenziali, in questo periodo è da ricordare l’utilizzo che Poincaré faceva di strumenti topologici per studiare la natura dei punti singolari e cicli limite. Per esempio è da ricordare lo studio delle orbite periodiche del problema dei tre corpi o anche delle biforcazioni delle forme di equilibrio di un fluido in rotazione all’aumentare della velocità di rotazione.

In questi anni vinse molti riconoscimenti, ma uno in particolare è da ricordare. Nel 1885 il re svedese Oscar II decise di celebrare il suo sessantesimo compleanno assegnando un premio che incoronasse una grande scoperta nel campo dell’analisi matematica. Il premio era anche parecchio consistente. Ogni progetto da sottomettere avrebbe dovuto essere legato ad uno dei seguenti argomenti:

  • Il problema degli n-corpi nella meccanica celeste
  • La generalizzazione delle funzioni ultraellittiche di Fuchs
  • Le funzioni definite da un’equazione differenziale del primo ordine
  • Le relazioni algebriche tra due funzioni di Fuchs aventi un gruppo comune.

Premetto che non so nulla, o quasi, riguardo questi argomenti, però se ti possono interessate ti consiglio di farti qualche ricerca su Google, di sicuro troverai brevi spiegazioni che ti chiariscono di cosa si parla.

Beh, detto ciò…la competizione rientrava perfettamente negli interessi matematici di Poincaré, che decise di lavorare alla prima domanda. Nel maggio 1888 consegnò un memoriale di 160 pagine intitolato “Sur le problème des trois corps et les équations de la dynamique”, che evidentemente è legato al problema dei 3-corpi.

Nonostante non rispose completamente alla domanda, la commissione (composta da Weierstrass, Hermite e Mittag-Leffler) gli assegnò il premio, aggiungendo che :

È il lavoro approfondito ed originale di un genio della matematica, che è anche uno tra i matematici più grandi di questo secolo. Le domande più importanti e difficili, come la stabilità del sistema, sono trattate usando metodi che aprono una nuova era nella meccanica celeste.

La Commissione

In seguito Poincaré scoprì che nel suo memoriale c’erano alcuni errori anche parecchio importanti, infatti la conclusione riguardo la stabilità del sistema solare non era valida! Nel Giugno 1890 pubblicò una nuova versione del memoriale, lunga 270 pagine. Nel correggere i suoi errori, Poincaré scoprì una miniera d’oro per la matematica e la scienza in generale essendo il pioniere della Teoria del Caos.

In uno dei suoi scritti più famosi, successivamente spiegò quasi in modo profetico, le possibili conseguenze delle scoperte che fece in quel memoriale:

Può succedere che piccole differenze nelle condizioni iniziali di un sistema possano produrre grandi differenze in fenomeno finale .

Poincaré

Questo diede quindi origine al famoso effetto farfalla, ma gestire questa farfalla fu molto difficile per Poincaré.

Fisica matematica

Il periodo straordinario e turbolento in cui Poincaré si dedicò alla ricerca per il premio del re svedese non gli impedì di prendere davvero seriamente la sua posizione come professore di fisica matematica. Anche se non era, come abbiamo già visto, un professore straordinario, era uno davvero coscienzioso. Ogni semestre sceglieva nuovi argomenti e scriveva delle premesse/prefazioni agli appunti dei suoi migliori studenti, modificandoli anche leggermente. Dopo questa revisione li pubblicava tutti, organizzandoli in più di una dozzina di volumi, coprendo tutta la fisica classica (idrodinamica, elasticità, teoria del potenziale, ottica, elettromagnetismo) e la probabilità, dove Poincaré mostrò la sua creatività e le sue doti matematiche.

I suoi libri sulla teoria di Maxwell contengono le origini della relatività speciale e lo portarono ad analizzare, correttamente, e introdurre le trasformazioni di Lorentz.

Riguardo i contributi di Poincaré alla fisica matematica trovi un libro molto interessanti qui:

Nel 1905 Poincaré pubblicò una serie di note ed un memoriale sulla dinamica dell’elettrone, contenenti tutta la matematica della relatività speciale. Per questo motivo gli storici della scienza stanno ancora discutendo sulla paternità della relatività speciale tra Einstein e Poincaré. Di sicuro si sa che Poincaré anticipò il cosiddetto Spaziotempo di Minkowski (non ho mai studiato la teoria della relatività quindi mi limito a riportare quanto ho trovato online, puoi vedere qualcosa su questo risultato qui: Relatività Ristretta 7 – Lo spazio Tempo di Minkowski).

Tra il 1890 e 1895 Poincaré dedicò tre lunghi memoriali alle equazioni alle derivate parziali della fisica matematica classica. Una delle ultime conferenze a cui partecipò fu il primo Congesso di Solvay, a Bruxelles, dal 30 Ottobre al 3 Novembre del 1911. Fu tenuto all’Hotel Metropole e tra i partecipanti si possono ricordare Lorentz, Poincaré, Planck, Marie Curie, Einstein, Perrin, Langevin, Rutherford e molti altri che, insieme, discussero sui più recenti sviluppi nella teoria quantistica.

Con 49 candidature tra il 1901 e il 1912 Poincaré è lo scienziato più nominato della storia al premio Nobel per la fisica. Tuttavia non riuscì a togliersi lo sfizio di vincerne uno, morì infatti senza aggiungere il Premio Nobel alla lista dei suoi successi scientifici.

Congettura di Poincaré

Tra il 1892 e il 1901 Poincaré creò, quasi da zero, gli elementi fondanti della topologia algebrica. Abbozzò addirittura la struttura della de Rham cohomology. Inoltre dimostrò che ogni varietà 2-dimensionale che sia compatta e semplicemente connessa (per esempio un cubo) è omeomorfa alla classica sfera (omeomorfa vuol dire che si può passare dal cubo alla sfera, supponendoli fatti di gomma, semplicemente rimodellandola, senza strappare o tagliare nulla…l’esempio classico è che una tazza e una ciambella sono omeomorfi).

Ma non si fermò qui…andò oltre ed enunciò la famosa “congettura”:

Ogni varietà 3-dimensionale che sia compatta e semplicemente connessa è omeomorfa alla sfera 3-dimensionale.

Henri Poincaré

Questa ad oggi non è più una congettura, ma un teorema. Essa è infatti l’unico problema del Clay Mathematics Institute che in questi anni è stato dimostrato. Se ti interessano questi famosi Problemi del millennio, trovi un articolo dedicato qui: I 7 problemi del millennio.

Se ti interessa approfondire con calma questa “congettura” e la sua storia ti consiglio vivamente questo libro, le premesse sembrano ottime ma non l’ho letto al momento in cui sto scrivendo:

La dimostrazione è dovuta ad un matematico russo, Perelman, che si rifiutò anche di ritirare il premio monetario assegnato a questo problema:

Conclusione

Quando Poincaré morì improvvisamente nel 17 Luglio 1912, a causa di un’embolia a seguito di un intervento, il mondo scientifico era ancora lontano dall’essere pronto a beneficiare dei suoi risultati scientifici. Secondo il grande matematico francese Jean Leray:

Molti pochi uomini sono stati capaci di seguire i suoi ragionamenti; praticamente non aveva studenti. Dopo un secolo di lavoro nella matematica, possiamo capire i suoi risultati e pensieri più facilmente, parlare di essi in un modo più familiare; ma più li approfondiamo, più è naturale ammirare e rispettare il grande Poincaré

Jean Leray

Concludiamo con le parole pronunciate dal famoso fisico matematico David Ruelle:

La fisica matematica prova a capire un mondo di sconosciute e infinite complessità con strumenti che sappiamo essere limitati. Questo richiede audacia e modestia allo stesso tempo. Chiaramente Henri Poincaré non si fece mancare nè l’una nè l’altra qualità.

David Ruelle

Su Poincaré e i suoi traguardi scientifici si potrebbe dire molto altro, ma preferisco limitarmi a quanto scritto. Ti lascio qui di seguito qualche risorsa se vuoi approfondire personalmente la sua vita e le sue opere:

Ah..se sai il francese c’è questo documentario fatto davvero bene (è solo un parere che ti dò ad una prima occhiata dato che al momento non capisco il francese 🙂 ) e lo trovi qui:

Se ti interessano articoli di approfondimento su altri matematici ti consiglio questi:

Il sogno di Leibniz: la caratteristica universale

Cantor: quanto è infinito l’infinito?

Peter Griffin, il matematico che ha svelato i segreti del blackjack

No, non stiamo parlando del protagonista di “I Griffin”, il simpatico cartone animato sbarcato in
Italia nel 2000. Peter A. Griffin era un insegnante di algebra con la passione per il blackjack. 
Nacque nel 1937 nello stato americano del New Jersey da una famiglia intellettuale: suo nonno,
Frank Loxely Griffin, era uno stimato professore di matematica alla Reed University, nonché
autore di diversi libri scolastici sulla materia. Entrambi i suoi fratelli hanno dimostrato un grande
intelletto sin dalla giovane età, ma nel campo della letteratura anziché della matematica: il
fratello Alan MacDougall è conosciuto per le sue poesie, mentre la sorella Barbara Dan per i suoi
romanzi.

Griffin studiò alla Portland State University nello stato dell’Oregon, per poi conseguire
il master’s degree, simile alla nostra laurea magistrale, alla University of California, nella città di
Davis. Nel 1965, iniziò a lavorare come professore di matematica e statistica alla California State
University nella città di Sacramento. Dedicò la maggior parte della sua vita lavorativa
all’insegnamento accademico, e non smise mai fino alla sua morte, causata dal cancro alla
prostata e avvenuta nel 1998.

Gli studi e gli esperimenti di Griffin sulle tecniche di conteggio delle carte lo hanno reso così famoso nel mondo del blackjack che oggi la sua foto appare nella “Hall of Fame” del Barona Casino, in California, dove fu aggiunta insieme a quelle di molti altri esperti del settore. Insieme al giocatore di blackjack professionale Ken Uston, Griffith fu l’unico ad apparire nella Hall of Fame del gioco dopo la sua morte.

Gli studi di Griffin sul blackjack

La passione del professor Griffin per il mondo delle carte lo spinse a proporre ai suoi studenti un corso sui calcoli matematici legati al gioco. Allo scopo di preparare il materiale didattico per il corso, Griffin si recò in Nevada per svolgere ricerche proprio dentro i casinò, e poté così giocare a blackjack per la prima volta. L’esperienza fu tutt’altro che un successo: i principi matematici che Griffin riteneva essere vincenti gli causarono invece grosse perdite. 

Tuttavia, la sconfitta non bastò a demoralizzare il professore. Al contrario, lo spinse a studiare in maniera ancora più approfondita il blackjack e la conta delle carte, alla ricerca di nuove strategie matematiche per assicurarsi la vittoria. 

Iniziò a raccogliere dati su giocatori scelti a caso nei casinò di Atlantic City, e a confrontare questi dati con quelli che aveva raccolto in Nevada. In questo modo, riuscì a calcolare per la prima volta la percentuale di svantaggio del giocatore medio, e a migliorare drasticamente le sue abilità nel gioco.

Gli studi di Griffin sul blackjack culminarono nel 1979, con la pubblicazione del suo libro intitolato “Theory of Blackjack: The Complete Card Counter’s Guide to the Casino Game of 21”. 21 è un altro nome che viene dato al gioco del blackjack.

Il libro è considerato la Bibbia del conteggio delle carte e, seppure un po’ troppo accademico per il giocatore medio, le sue tecniche sono ancor oggi ampiamente utilizzate nel mondo dei casinò. 

“Theory of Blackjack” è stato pubblicato 17 anni dopo quella che fino ad allora era considerata la più grande guida al mondo del blackjack, cioè “Beat the Dealer” di Edward O. Thorp. È interessante notare come Thorp stesso apprezzò il libro di Griffin, sottolineando la sua importanza per lo studio scientifico del blackjack ed il suo stile gradevole e scorrevole.

Nel 1991, invece, Griffin pubblicò “Extra Stuff”, una raccolta di studi e articoli accademici a cui aveva lavorato successivamente alla pubblicazione del suo primo libro. Anche se la sua abilità nel conteggio delle carte faceva impallidire anche i giocatori più esperti al tavolo verde, Griffin decise di non diventare mai un giocatore full time, perché giocare a blackjack per troppo tempo lo annoiava, e gli avrebbe tolto tempo prezioso da dedicare all’insegnamento.

Dopo aver raggiunto la fama nel mondo del gioco grazie ai suoi libri, però, il professore di Sacramento insegnò corsi di “matematica del casinò” allo Harrah’s Institute of Casino Entertainment.

Il paradosso di Achille e la tartaruga

A Zenone di Elea (450 a.C.) viene attribuita la creazione di numerosi paradossi famosi e forse il più noto è il paradosso di Achille e la tartaruga (Achille era il grande eroe greco dell’Iliade di Omero). Ha ispirato molti scrittori e pensatori nel corso dei secoli, in particolare Lewis Carroll (vedi Paradox di Carroll) e Douglas Hofstadter, entrambi i quali hanno scritto dialoghi espositivi che coinvolgono la Achille e la tartaruga.

Varie formulazioni del Paradosso di Achille e la tartaruga

La traduzione della versione originale di questo paradosso di Zeonone è più o meno come scritto qui sotto:


La tartaruga ha sfidato Achille ad una gara, sostenendo che avrebbe vinto a patto che Achille gli avesse dato un piccolo vantaggio. Achille rise di questo, perché ovviamente era un potente guerriero ed era rapido, mentre la tartaruga era pesante e lenta.

“Di che grande vantaggio hai bisogno?” Chiese sorridendo alla tartaruga.

“Dieci metri”, rispose quest’ultimo.

Achille rise più forte che mai, “Perderai sicuramente, amico mio”, disse alla Tartaruga, “ma facciamola pure questa gara, se lo desideri.”

“Al contrario”, disse la tartaruga, “vincerò e posso dimostrartelo con una semplice discussione”.

“Continua allora”, rispose Achille, con meno sicurezza di prima. Sapeva di essere un’atleta superiore, ma sapeva anche che la Tartaruga era più furba e acuta, e aveva perso molte discussioni al limite dell’assurdo con lei in passato.

“Supponiamo” iniziò la Tartaruga, “che mi dai un vantaggio di 10 metri. Pensi che saresti in grado di percorrere questi 10 metri di svantaggio iniziale rapidamente?”

“Molto rapidamente” affermò Achille.

“E quando avrai percorso quei 10 metri, fino a dove pensi che sarò arrivata?”

“Forse avrai fatto un metro, non di più”, disse Achille dopo un momento di riflessione.

“Molto bene”, rispose la tartaruga, “quindi ora c’è un metro tra di noi. E pensi di colmare quella distanza molto velocemente? ”

“Molto rapidamente, davvero!”

“Eppure, in quel momento sarò andata ancora un po’ più avanti, saresti ancora in grado di recuperare quella distanza, giusto?”

“Sì”, disse Achille lentamente.

“E mentre lo fai, sarò andata ancora un po’ più lontano, in modo che tu debba poi recuperare ancora la nuova distanza”, continuò la Tartaruga senza intoppi.

Achille non disse nulla.

“Ecco quindi che inizi a realizzare che, in ogni momento, devi recuperare una distanza tra noi, inoltre io – nel tempo a te richiesto per recuperarmi – percorrerò ancora nuova strada, per quanto piccola, così che dopo tu debba recuperare di nuovo.”

“In effetti, deve essere così”, disse stancamente Achille.

“E così non potresti mai raggiungermi” concluse la Tartaruga con simpatia.

“Hai ragione, come sempre”, disse tristemente Achille – e concesse la corsa.


Il paradosso di Zenone può essere riformulato in maniera “più moderna” come segue. Supponiamo che io voglia attraversare la stanza. Innanzitutto, ovviamente, devo percorrere metà della distanza. Quindi, dopo, devo coprire metà della distanza rimanente. E dopo devo coprire metà della distanza rimanente. E poi devo coprire metà della distanza rimanente… e così via per sempre. La conseguenza è che non riesco mai ad arrivare dall’altra parte della stanza.

Quest’immagine, seppur in inglese penso ti chiarirà il concetto:

Trovata su Reddit

Nell’immagine qui sopra si può vedere un criceto che vuole rasarsi il pelo, va quindi in un negozio dove ad ogni sessione gli radono metà del pelo che ha attualmente…esattamente come Achille non prende mai la tartaruga, anche in questo caso il criceto non potra mai essere completamente rasato, dato che:

$\Big(\frac{1}{2}\Big)^n>0\;\;\;\forall n\in\mathbb{N}.$

Una delle descrizioni più famose del paradosso è dello scrittore argentino Jorge Luis Borges:

«Achille, simbolo di rapidità, deve raggiungere la tartaruga, simbolo di lentezza. Achille corre dieci volte più svelto della tartaruga e le concede dieci metri di vantaggio. Achille corre quei dieci metri e la tartaruga percorre un metro; Achille percorre quel metro, la tartaruga percorre un decimetro; Achille percorre quel decimetro, la tartaruga percorre un centimetro; Achille percorre quel centimetro, la tartaruga percorre un millimetro; Achille percorre quel millimetro, la tartaruga percorre un decimo di millimetro, e così via all’infinito; di modo che Achille può correre per sempre senza raggiungerla».

Jorge Luis Borges

Ovviamente questo è un paradosso perchè porta a risultati parecchio controintuitivi. Se ti interessa sapere qualcosa di più approfondito sulla nozione di Paradosso e su altri esempi avevo scritto questi articoli a riguardo:

Vediamo però ora i problemi che si incontrano quando si vuole “verificare” questo paradosso nel mondo reale.

Il paradosso di Achille e la tartaruga nel mondo reale

Quando si parla di matematica del continuo e di numeri reali, tutto quanto detto nelle varie formulazioni del paradosso torna. Infatti i numeri reali godono di una proprietà davvero importante, riassunta nel cosiddetto Assioma di completezza.

Data una qualunque coppia $A,B\subset\mathbb{R}$, entrambi non vuoti e tali che $a\leq b$ $\forall (a,b)\in A\times B$, allora esiste un numero reale $c$ tale che $a\leq c \leq b,\;\;\forall (a,b)\in A\times B.$ Questo $c$ è detto separatore degli insiemi $A$ e $B$

Assioma di Completezza numeri reali

Questo implica che ogni insieme limitato superiormente ammetta estremo superiore e se limitato inferiormente ammetta estremo inferiore e, in parole povere, dice che la retta reale è senza buchi.

Come può questo aiutarci a costruire il paradosso di Achille e la tartaruga?

Beh, semplicemente perché in questo modo sappiamo che di ogni distanza possiamo calcolarne una frazione e quindi dire che Achille non raggiungerà mai, lungo la retta reale, la tartaruga.

Cosa succede invece nel mondo reale? Facciamola molto semplice, supponiamo che i piedi di Achille sia di 20cm per semplicità. Bene, supponiamo in oltre che il vantaggio iniziale sia di 10 metri e che Achille sia 2 volte più veloce della tartaruga. Ottimo, vediamo cosa succede nella gara:

  1. Quando Achille percorre i 10 metri iniziali di vantaggio, la tartaruga ne ha fatti altri 5 (“nuovo svantaggio”)
  2. Quando recupera anche questi 5, la tartaruga ne ha fatti altri 2.50m
  3. In seguito, nel tempo che Achille recupera questi 2.5m la Tartaruga ne fa 1.25m
  4. Poi percorrono rispettivamente 2.5m e 0.625m
  5. Quindi 0.625m e 0.3125m (Anche se sarebbero difficili da misurare, supponiamo però di riuscire senza errori)
  6. Eccoci al punto critico: ora Achille ne fa 0.3125 e la tartaruga 0.15625‬m

Ottimo, il distacco tra i due a questo punto è quindi di 0.15625m, che è meno della lunghezza del piede di Achille. Supponiamo che tutte le misurazioni delle distanze sono state prese dal tallone di Achille, ciò vuol dire che la punta dei suoi piedi ha ormai raggiunto la tartaruga.

Ora, sono consapevole che è un po’ buttato lì questo ragionamento, ma con i numeri volevo farti vedere come nella realtà questo sia davvero impossibile, dato che gli esseri viventi non sono puntiformi e non siamo nemmeno in grado di dividere infinitamente bene una distanza. Quindi nel mondo reale prima o dopo i due sarebbero allo stesso livello.

Si può dimostrare anche matematicamente che nella vita reale Achille avrebbe raggiunto la tartaruga in tempo finito, come vedremo qui di seguito (il ragionamento è preso da Wikipedia ma è molto naturale procedere in questo modo).

Il tutto sarà basato sullo studio di una serie geometrica. Definiamo con $T$ il tempo necessario ad Achille per raggiungere la tartaruga, come possiamo scrivere questo tempo?

$T=t_0+t_1+t_2+….$

dove $t_i$, $i\in\mathbb{N}$ sono i tempi necessari ad Achille per colmare l’$i-$simo divario con la tartaruga. Quindi a priori sono infiniti contributi da sommare. Andremo però a mostrare, grazie a qualche semplice legge fisica, che nel concreto questa somma è in realtà finita. Definiamo però ora un sistema di riferimento in cui lavorare:

  • Fissiamo l’origine dell’asse $x$ alla posizione iniziale di Achille, mentre quella iniziale della tartaruga la diciamo $L_0$.

  • Definiamo con $L_1,L_2,…$ le successive distanze, quelle colmate in $t_1,t_2,…$ dall’eroe.

  • La velocità di Achille è definita $v_A$ mentre quella della tartaruga $v_T$, dove chiaramente $v_A>v_T$ altrimenti possiamo già concludere che l’eroe non raggiungerà mai l’avversaria.

  • Nel paradosso è supposta l’esistenza di una costante $d$ tale che $\frac{v_T}{v_A}=d$, ad esempio $d=1/10$ se Achille va 10 volte più veloce della tartaruga.

La legge del moto rettilineo uniforme afferma che $x_A(t)=s_0 + v_At = v_At$ visto che fissiamo la posizione iniziale di Achille a 0. Per la tartaruga vale invece $x_T(t) = L_0 + v_Tt$. Il tempo $t_0=\frac{L_0}{v_A}$ è quello richiesto ad Achille per percorrere il distacco iniziale di $L_0$.

Quanto spazio ha percorso la tartaruga in questo tempo $t_0$? Beh, basta usare la legge oraria:

$L_1 = x(t_0)-x(0) = L_0+v_Tt_0-L_0=v_Tt_0=v_T\frac{L_0}{v_A}.$ A questo punto si può procedere calcolando $t_1$, ovvero il tempo necessario ad Achille per percorrere $L_1$, vedendo che ancora si ha $t_1=\frac{L_1}{v_A}$, tempo durante il quale la tartaruga si muoverà di $L_2 = v_Tt_1$ e così via per gli spostamenti futuri…

Quindi

$t_n=\frac{L_n}{v_A} = \frac{v_Tt_{n-1}}{v_A} =t_{n-1}\frac{v_T}{v_A} = dt_{n-1},$ da cui segue per ragionamento induttivo, che $t_n=d^nt_0$.

Eccoci quindi quasi alla conclusione, riassembliamo i pezzi per ricavare

$T = t_0+t_1+t_2+…=t_0+dt_0+d^2t_0+…+d^nt_0+… = \sum_{n=0}^{+\infty} d^nt_0 = t_0 \sum_{n=0}^{+\infty} d^n $

che è effettivamente una serie geometrica. Siccome $d<1$, si ha che essa converge e il valore a cui converge sarà:

$T=t_0\frac{1}{1-d}=t_0\frac{1}{1-v_T/v_A} = \frac{v_At_0}{v_A-v_T}=\frac{L_0}{v_A-v_T}<+\infty.$

Eccoci a concludere quindi che nel mondo reale, i due si incontreranno dopo un tempo $T$ che è finito e, chiaramente, dopo questo istante Achille supererà la tartaruga. Una cosa che ci tengo a farti notare, più $v_A-v_T$ è piccola, ovvero le due velocità sono simili, più il tempo necessario a pareggiare le posizioni cresce.

Un’altra cosa interessante è che se, per assurdo $v_A<v_T$ otterremmo un tempo $T<0$, che può essere interpretato nel senso che nel passato la tartaruga era dietro ad Achille ma l’ha superato.

Questa è una dimostrazione del perché questo è considerabile un paradosso. Infatti abbiamo che il risultato matematico è controintuitivo rispetto a quello che ci aspettiamo accada (e accade realmente).

La dimostrazione si basa unicamente sullo studio delle serie geometriche convergenti. Ah, se non conosci questi oggetti, puoi studiarli qui: Serie Geometrica – Youmath.

Però il ragionamento fatto dalla tartaruga fila nel momento in cui ci si pensa, giusto?

8 consigli per gestire al meglio l’Università di matematica

Ci siamo! Ormai l’università è iniziata e stai cercando qualche consiglio per affrontarla al meglio. Magari ti sei iscritto al primo anno di università. Probabilmente ti salgono i primi dubbi sul motivo per cui ti sia andato ad iscrivere in un’università del genere.

Magari inizi a chiederti se sarà troppo difficile. Intanto ti do già una risposta a questa domanda: è troppo difficile per te se non hai voglia di studiare, altrimenti la laurea è praticamente già tua. Ciò che andrai a studiare è oggettivamente di complicata comprensione, ma con lavoro, collaborazione e una mano (che dopo ti dirò cosa significa) riuscirai senza dubbio a capire anche i passaggi più complicati di ogni corso.

Questo articolo ha anche l’obiettivo importante di far sì che tu capisca bene che studiare matematica non vuol dire imparare a memoria dei risultati, ma vuol dire capire bene i teoremi, capire dei risultati, esempi e dimostrazioni.

Detto ciò, ho pensato di darti qualche suggerimento per agevolare l’inizio e il proseguimento della tua carriera universitaria, soprattutto se andrai a frequentare (o stai già frequentando) matematica o comunque anche per gli anni successivi.

Sono semplicemente otto consigli che ti do basandomi sulla mia esperienza. Magari non funzionano con te, magari non ti trovi a seguire le mie indicazioni, però questi semplicemente sono i miei suggerimenti 🙂

Ah…se invece di leggere preferisci ascoltare ho preparato anche la versione audio qui:

1. Inizia a studiare per tempo

Partiamo da una cosa abbastanza semplice da comprendere, ti consiglio di non vedere gli esami troppo distanti. Noi quando ci scriviamo all’università veniamo da cinque anni alle superiori in cui, tranne le verifiche che ci vengono imposte ogni due settimane, non dobbiamo preparare degli esami che comprendano quantità di programma molto elevato. Si, è vero…c’è la maturità ma quella si fa una volta in tutto il liceo in tutte le superiori!

Nel momento in cui vai ad iscriverti all’università, ti trovi a settembre/ottobre avendo cinque o sei mesi davanti senza nessun test e senza nessun esame, ed è quindi abbastanza naturale sentirsi liberi, sentirsi senza troppo lavoro da fare. Questo perché gli esami sembrano distanti. Ecco dov’è il problema! Infatti all’inizio, soprattutto il primo anno in cui si fanno materie come Analisi 1, Fondamenti o Algebra Lineare che magari in parte sono già state viste alle superiori, ce la si prende comoda e si inizia a dire “Bene questo l’ho già sentito, mi basterà rileggerlo prima dell’esame!”.

Iniziando il semestre in questo modo, è poi un attimo trovarsi alla fine con troppe cose da studiare per preparare come si deve l’esame. Questo è un problema soprattutto perché gli esami del primo anno sono fondanti e quindi ci sono esami che se non si capiscono bene si farà fatica poi negli anni successivi, perché sono comunque argomenti base che vengono utilizzati nei corsi seguenti.

Questo è un problema che mi sento di condividere soprattutto perché il mese scorso (sto scrivendo il 14 ottobre 2019), siccome adesso sono in Erasmus in Francia, ho avuto modo di vedere com’è organizzata l’università qui. Qui diciamo che non hai questo margine, questo respiro, perché ogni tre mesi hanno degli esami. Quindi nelle università francesi non ti sentiresti così spensierato, con così tanto tempo libero come in Italia. Il che è sia una bene che un male, ecco perchè ci ho tenuto sottolineare questo “problema” 😉

Quindi il suggerimento è di non prendertela comoda. Anche se ti sembra di sapere già qualcosa segui comunque le lezioni e inizia a studiare da subito.

2. Segui (nei limiti del possibile) tutte le lezioni

A parte alcune facoltà, solitamente matematica è un indirizzo di studi in cui la frequenza non è obbligatoria. Altra grande differenza rispetto alle superiori!

Cosa vuol dire questo? Vuol dire che possiamo anche non andare a lezione, esatto!

Che pacchia…mi faccio tutti i giorni a svegliarmi alle 11, un po’ di TV e poi dopo pranzo mi metto lì alla scrivania a leggere 2-3 ore le dispense del prof.

Questa laurea in matematica mi piace già un sacco!

Benissimo, cancella queste idee dalla tua testa 🙂 , magari riuscirai a portare a termine la laurea in questo modo, ma ti assicuro che sarà molto più lungo e complicato il tutto.

Preparare un esame di matematica in autonomia, senza seguire le lezioni, (soprattutto gli esami del primo anno) non dico che sia impossibile ma è parecchio difficile. Magari alcuni argomenti non sono neanche difficili di per sé, ma al primo anno è importante acquisire il formalismo matematico, il modo di ragionare che è tipico della matematica.

Mi riferisco per esempio ad apprendere come è strutturata una dimostrazione o a come approcciare un problema. Queste sono tutte competenze che si acquisiscono col tempo e con l’esperienza, ma soprattutto andando a lezione. Seguendo quello che il professore dice, sarà normale in certe lezioni non capire al volo quello che viene detto e non devi spaventarti in quelle circostanze. Devi comunque continuare ad andare a lezione a meno di impedimenti importanti che non puoi evitare.

Non è importante capire tutto al primo colpo. Anzi spesso sarà difficile, se non impossibile. Però comunque a lezione stai attento o attenta e prendi appunti. Pian piano il cervello si abitua a certi ragionamenti, a forza di sentirli e, anche se ti sembrerà di non capire, in realtà ti stai agevolando notevolmente la fase di studio di quell’argomento. Studiare qualcosa avendone anche solo sentito parlare è meglio che studiare qualcosa di cui sappiamo solo il nome 🙂

P.S. Un discorso a parte va fatto per i lavoratori part-time. Io ti ammiro molto se stai portando avanti, insieme all’università, un lavoro. Significa che sei una persona organizzata e determinata. Il discorso che ho appena fatto chiaramente vale molto poco per te visto che ti sarà difficile andare sempre a lezione, però ti dico di non sottovalutare la frequenza quando riesci ad andare.

Così arriviamo anche al consiglio numero tre…

3. Prendi sempre appunti

A matematica siamo fortunati perché, rispetto ad altre facoltà, (come ho avuto modo di sperimentare per esempio nella facoltà di economia o per corsi più statistici), i professori sono soliti scrivere alla lavagna tutto quello che dicono. Questo accade soprattutto al primo anno perché i corsi sono molto teorici e c’è poco di applicato.

Corsi come Algebra lineare, Analisi uno, Fondamenti della matematica sono tutti teorici, con molti teoremi e molti risultati da apprendere. Per fortuna il professore quando fa lezione solitamente entra in aula, prende il gesso (o pennarello, magari voi siete più moderni 😉 ) e inizia scrivere alla lavagna.

Quindi l’idea è che vai a lezione ma non a scaldare il banco, ti metti lì con il tuo quaderno e scrivi quello che scrive (e dice) il prof.

Ti accorgerai che scrivere tutto è possibile visto che quello che dicono loro lo scrivono anche la lavagna e quindi c’è il tempo di copiare tutto. Se invece hai corsi un po’ più discorsivi (perché magari sei più avanti con gli anni e hai corsi di statistica per esempio) solitamente accade che il professore entra e parla su delle slide. Può succedere questo. In quel caso non devi certo star lì a scriverti tutte le parole che il professore dice però devi cercare di segnarti le cose importanti che dopo combinerai con le dispense, i libri di testo e le slide, in modo da preparare l’esame in maniera completa. Però l’importante è non andare ad ascoltare e basta.

Giusto per ribadire il concetto…pensare di aver capito perché si è ascoltato è un po’ troppo azzardato, soprattutto siccome l’esame (come ho detto prima) può essere addirittura cinque mesi dopo che hai seguito la lezione. E’ quindi un attimo che un passaggio si dimentichi o non ci si ricordi il perché di qualche risultato. Quindi è importante prendere degli appunti e, se sei organizzato e hai voglia di lavorare, sarebbe anche comodo riordinare gli appunti a casa. Ad essere onesto, io non l’ho mai fatto. E scrivo anche male 😉 . Però mi trovo bene con questo metodo, quindi continuo così. Però se tu hai tempo e voglia di sicuro non può altro che aiutarti sistemare gli appunti, quantomeno è un modo per rivedere una prima volta la lezione.

Eccoci al consiglio numero 4…

4. Compra o prendi in prestito i libri suggeriti

Adesso vado a suggerirti una cosa che non ho seguito in triennale, ma che ho scoperto essere importante ora in magistrale. Andando in classe a quasi tutte le lezioni e prendendo appunti (solitamente in maniera più o meno ordinata) mi sono sempre trovato bene e non ho mai né comprato libri, nè ne ho presi in prestito in biblioteca. Questo perché pensavo che fossero sufficienti quegli appunti.

In realtà i libri li ho usati per preparare un paio di esami (Analisi due ed Analisi tre per esempio) ma in magistrale ho scoperto che, nonostante gli appunti possano essere autosufficienti e possano permetterti di preparare l’esame bene, i libri possono aiutare davvero. Infatti ti anticipo che anche senza usare libri gli esami li ho sempre passati e con buoni risultati devo dire, però a volte lo sforzo per comprendere certi passaggi mi rendo conto che sarebbe stato ridotto notevolmente appoggiandomi ad un buon libro…e ce ne sono davvero di meravigliosi.

In magistrale ho sperimentato come un buon libro ti permette di velocizzare lo studio.

Puoi farne a meno. Però l’avere come supporto un libro ben fatto, ben pensato e con un percorso che ti porti da un punto A ad un punto B in maniera chiara può essere molto d’aiuto, può aiutarti a preparare l’esame in meno tempo. Può permetterti di bloccarti meno tempo su domande che gli appunti non riescono a chiarirti e magari, leggendo la spiegazione sotto un altro punto di vista, riesci a capire meglio e più in fretta.

Quindi ho pensato di preparare una lista di link, con dei commenti personali, in cui ti elenco i libri che suggerisco per accompagnare gli appunti dei vari esami della triennale (e magari metterò anche qualcosa per la magistrale). Questa lista sarà in continuo aggiornamento ma adesso puoi già trovarne un bel po’ e la trovi qui:

Libri di testo suggeriti per l’università di matematica

Ah, per alcuni libri interessanti (magari per materie un po’ più avanzate) può venirti utile l’inglese 😉 .

Arriviamo ora a quello che ritengo il consiglio più potente, il suggerimento numero 5.

5. Trovati un bel gruppo di compagni/e di corso con cui studiare

Il consiglio che ti do è di cercare di trovarti un gruppetto di altri ragazzi e ragazze del tuo corso con cui ti trovi a studiare insieme. Io alle superiori ero contro lo studio di gruppo, perché pensavo di trovarmi meglio e risparmiassi tempo studiando da solo. Probabilmente era anche vero per quelle materie, ma per le materie come Analisi 1 o anche l’Algebra lineare (stando sugli sui corsi del primo anno) può essere davvero utile lavorare insieme a degli amici, lavorare insieme ad altri che magari hanno competenze e gusti diversi.

Poi chiaramente con questo gruppo non ci studierai e basta, andrai anche a divertirti, non preoccuparti 😉

Ma vediamo come mai un gruppo del genere ti può aiutare. Una cosa che succede soprattutto nei corsi in cui devi fare tanti esercizi, perché hai un esame scritto, è che probabilmente tu ti trovi a tuo agio a trattare certe tematiche oppure che tu capisca meglio certe dimostrazioni e loro ne capiscano meglio altre. Oppure a te è chiara l’idea per risolvere un esercizio ma non sei in grado di formalizzarla, mentre il tuo amico è bravo a scrivere in “matematichese” ma non sarebbe stato in grado di pensare come risolvere l’esercizio.

Essendo quindi più di una testa è più facile riuscire a portare avanti un esame in tranquillità, senza scervellarsi troppo e studiandolo comunque bene. Quindi la cosa che ti suggerisco è di provare a trovarti un gruppetto di due, tre o quattro persone con cui fare esercizi, confrontarti su domande, dubbi e provare a capire anche la teoria presentata a lezione.

 Quindi loro dovrebbero essere le prime persone a cui porre delle domande.

6. Fai domande, non accumulare dubbi e non portarteli all’esame

Nel caso tu non riesca a capire qualche passaggio o qualche risultato e magari anche il tuo gruppetto di amici non è in grado di aiutarti, ti chiedo di non tenerti il dubbio e non lasciare che questo cresca o che ti rimangano delle lacune fino al giorno dell’esame. Quello che ti suggerisco di fare è di trovare un momento in cui il professore è disponibile per il ricevimento (o anche prima/durante la lezione) e chiedergli ciò che non riesci a capire.

Non farti troppi problemi, in fondo loro sono lì per accertarsi che tu capisca, magari non lo fanno con troppa voglia (può succedere) ma comunque ti risponderanno.

E in questo modo ti sarà più chiaro il problema e potrai proseguire in tranquillità con gli argomenti successivi.

Questo è importante perché in matematica più o meno tutto è collegato, non puoi quindi trascurare delle lacune e sperare che non emergeranno mai in futuro. Quindi cerca di risolvere i tuoi problemi il prima possibile (e ne avrai perché è normalissimo averne)!

7. Fai molti esercizi cercando di capire bene ciò che fai, così da essere in grado di generalizzare a casi leggermente diversi

Arriviamo quindi al penultimo consiglio.

Soprattutto al primo anno avrai molti esami che hanno sia un esame orale che scritto. Molti esami da 12 crediti avranno una parte del corso di esercizi per prepararsi all’esame scritto. Il professore solitamente ti suggerirà degli esercizi da provare a casa, e quindi insieme ai tuoi compagni di studi.

Questi esercizi non prenderli solo come un suggerimento. Sono solitamente mandatori, perché magari sono esercizi simili a quelli che troverai all’esame o comunque sono esercizi che è importante aver capito per poter comprendere l’argomento successivo. Quindi sia che questi fogli di esercizi abbiano dei punti bonus (nel caso tu li faccia bene) o meno, tu fregatene e comunque falli per prepararti all’esame.

Per preparare gli esami scritti ti consiglio non solo di fare questi esercizi ma di cercarne altri, in primis negli appelli vecchi (se riesci a reperirli online sul sito del corso meglio, se no puoi chiedere anche agli studenti degli anni passati che di sicuro sanno che nelle retrovie, su Dropbox magari, c’è qualche cartella “segreta” con un bel po’ di materiale utile. Chiaramente ogni riferimento è puramente casuale 😉 ).

Poi puoi anche affidarti a forum come matematicamente o YouMath o cercarli online. C’è infatti pieno di dispense, PDF ricchi di esercizi che sono magari anche svolti.

Sempre stando sul tema degli esercizi, probabilmente se tu sei andato ad iscriverti a matematica è perchè ti veniva facile come materia o ti piaceva particolarmente alle superiori. Magari riuscivi a risolvere anche velocemente gli esercizi.

Bene, all’università non devi spaventarti se per fare un esercizio ci metti tanto tempo. Può succedere di sbattere la testa (da solo e anche con altri) su un esercizio per ore e magari senza riuscirci.

Non è un problema questo, è normalissimo e magari il professore ti ha suggerito di farlo proprio per quel motivo. Magari era pensato non tanto perché l’esercizio è importante per il risultato, ma per il ragionamento che ci fai dietro per provare a capire come risolverlo.

Quindi non preoccuparti, prima o dopo troverai un modo per risolverlo. Puoi chiedere al professore o puoi chiedere su forum online. Comunque troverai un modo per risolverlo. L’importante è che non ti spaventi se dopo un’ora non riesci a risolverlo, può succedere.

Se ti interessano esercizi di Analisi uno svolti passo passo e magari qualche materiale aggiuntivo sulla teoria, ho aperto una Pagina Instagram che trovi qui @Analisiuno dove quotidianamente pubblico nuove soluzioni e discutiamo di problemi vari.

Davide

Arriviamo ora alla preparazione di un esame orale…

8. Impara a studiare correttamente le dimostrazioni

Abbiamo parlato abbondantemente della preparazione degli esami scritti. Manca ora qualche suggerimento per l’esame orale. Questo solitamente coinvolge una parte teorica predominante e di solito all’orale si richiede che vengano compresi i vari teoremi, i vari lemmi spesso con relative dimostrazioni.

Le dimostrazioni sono un qualcosa che non sei stato abituato fino ad ora a studiare con un certo metodo. Infatti quelle delle superiori non sono mai state dimostrazioni particolarmente lunghe, a meno che da solo non ti sei messo a studiarne di particolari e in quel caso complimenti!

Se ti interessa qualche consiglio personale per studiare le dimostrazioni prova ad ascoltare questa puntata di Podcast:

Devi farci un po’ la mano, sbatterci la testa e con calma ti crei un tuo metodo. Non è questo l’importante, quello che mi interessa consigliarti adesso è: in caso di risultati particolarmente complicati, non limitarti ad imparare a memoria. Può andarti bene una volta, due volte…però prima o dopo succederà che a qualche orale ti venga chiesta una cosa e tu, riferendola a memoria, attirerai l’attenzione del professore. Infatti lui, rendendosi conto subito che tu non stai capendo quello che dici, ti verrà a fare qualche domanda strategica 😉 a cui NON puoi rispondere senza aver capito bene il teorema in analisi.

Inoltre lo studio teorico non deve essere finalizzato a passare l’esame, ma a crearsi delle fondamenta solide per andare a seguire i corsi successivi. Quindi se tu impari a memoria dei risultati, delle dimostrazioni o dei teoremi, farai fatica a ricordarteli ed è questo l’obiettivo principale!

Se ti sei iscritto al corso di laurea in matematica l’obiettivo non dovrebbe essere tanto laurearsi nei tre anni (anche se sarebbe un bell’obiettivo), però l’importante è che tu capisca quello che studi. L’importante è che tu poi ti ricordi quello che hai fatto e sia in grado di utilizzarlo per studiare materie più avanzate o per risolvere problemi che ti interessano.


Eccoci alla fine di questa lista di suggerimenti…spero di averti dato qualche consiglio utile!

Ho scritto questo articolo perché ho pensato che mi avrebbe fatto piacere leggere una lista del genere quando,quattro anni fa, mi sono iscritto alla laurea in matematica. Infatti il mondo universitario e la matematica sono un qualcosa che non si conosce e non si sa cosa si vada a studiare.

Anzi di solito ci si iscrive al corso di laurea matematica perché ci si trova bene alle superiori a farla o perché viene facile, perché piace. Però la matematica che si fa alle superiori è completamente diversa da quella dell’università. C’è un mondo da scoprire e sono certo che ti divertirai a scoprirlo 🙂

Quindi spero di averti dato una mano. Non volevo spaventarti e se l’ho fatto scusami, però comunque questi sono solo dei suggerimenti. Tu leggili, se vuoi applicane anche solo 1 o 2 o anche nessuno, non è un problema.

Se ti è piaciuta questo articolo magari suggeriscilo ai tuoi amici che sai che sono iscritti alla laurea in matematica o che magari sono al secondo o terzo anno e pensi possa essergli utile.

Laurea in matematica: cos’è? Me la consigli?

Cos’è la laurea in matematica

Ti stai informando su cosa sia la laurea in matematica? Beh, intanto anche solo per essere tentato a iscriverti a questo corso di laurea ti faccio i complimenti, magari diventerai dei nostri 😉 Detto ciò, vediamo un po’ cosa sia questa laurea in matematica. 

Prima di iniziare l’articolo, ci tengo a farti sapere che lunedì 12 aprile 2021 ho organizzato una serata in cui parleremo dell’università di matematica con le chiamate vocali di Telegram. Se ti interessa puoi iscriverti al canale da qui https://t.me/mathoneblog . Ci sarà spazio per dubbi, domande e raccontare le nostre esperienze, ti aspetto! 😉

In questo paragrafo iniziale farò finta che tutti i corsi di laurea in matematica siano uguali (cosa parecchio errata) e mi concentrerò un po’ sullo spirito dietro a questa laurea e sugli aspetti che svilupperai in questi anni di studio, se sceglierai questo percorso.

Qui ho raccontato in un video, abbastanza lungo, la mia esperienza universitaria, se può interessarti/aiutarti.

Intanto ti suggerisco questa lettura molto interessante in cui vengono presentati alcuni suggerimenti per studiare matematica all’università: How to Study for a Mathematics Degree

Tralasciamo quindi le materie che andrai a studiare, ne parleremo nei prossimi paragrafi. Vediamo innanzitutto cosa NON è la laurea in matematica. In questi anni di studio di sicuro:

  • Non verrai formato per fare i calcoli velocemente
  • Non imparerai solo a far meglio quello che hai già visto alle superiori ma scoprirai mondi a te ora sconosciuti
  • Non ti annoierai. Il corso di laurea in matematica è parecchio impegnativo e quindi per preparare gli esami non ti basterà studiare le settimane prima della sessione. Cosa forse un po’ diversa da come sei abituato per le verifiche, però all’università sarà necessario sviluppare un buon metodo.
  • Non parlerai solo di numeri. I numeri sono solo uno strumento a disposizione del matematico, per verificare le proprie idee e ottenere risultati poi utili a interpretare la realtà
  • Non vedrai solo cose concrete. Anche se sceglierai un percorso più applicativo, un po’ come ho fatto io, tra tutte le materie che seguirai ce ne saranno di più concrete e di più astratte. Purtroppo o per fortuna i corsi sono spesso legati tra loro e quindi è necessario acquisire solide basi teoriche e capacità di astrazione per poi ragionare su esempi e problemi concreti

Bando alle ciance, basta con questi NON e andiamo a vedere cosa è effettivamente questa laurea. E’ un percorso, di 3 o più anni, in cui andrai a sviluppare grandi capacità di astrazione, di ragionamento, di lavorare in gruppo, di risolvere problemi e di organizzazione. Queste, come ben puoi intuire, sono tutte capacità poi spendibili non solo nei classici lavori che puoi pensare legati alla matematica (ne vedremo alcuni in seguito), ma sono tutte skill apprezzate in moltissimi ambiti lavorativi. Ecco quindi un motivo per cui ti sconsiglio di basare la tua scelta universitaria con il solo obiettivo di trovare un LAVORO SICURO, ti ricordo che con la tecnologia in così veloce avanzamento, gran parte dei lavori a tua disposizione quando concluderai la laurea non esistono ancora oggi (se vuoi approfondire questo tema leggiti questo articolo in cui si parla di 46 nuovi lavori per il 2030)

La laurea in matematica è quindi un percorso di studi parecchio completo, che grazie alla sua astrazione porta gli studenti ad ampliare anche la creatività/immaginazione, cose molto importanti anche per scopi ben lontani dalla matematica, come lo scrivere o il creare (start up per esempio).

Ah dimenticavo, tornando un po’ alle cose pratiche, solitamente i corsi di laurea in matematica si svolgono in una laurea triennale ed una magistrale, dove spesso nel percorso magistrale oltre a studiare cose chiaramente più avanzate, si cerca di costruirsi un percorso più specializzante in qualche settore.

Questo paragrafo introduttivo è stato un po’ di chiacchiere, ma comunque penso sia interessante la tematica delle cosiddette soft skills che questa tipologia di studi può aiutare a sviluppare. Passiamo quindi ad un’analisi un po’ più pratica, partendo da cosa aspettarsi da questo percorso di studi.

Cosa aspettarsi dalla matematica universitaria

Iniziamo con un dato di fatto: la matematica che hai avuto modo di conoscere alle superiori puoi vederla alla pari dell’inizio di un trailer di un film, neanche come tutto il trailer 🙂 Infatti alle superiori si vede più o meno bene, una semplificazione del calcolo differenziale in una variabile, con una parte relativa ad aritmetica e algebra nei primi anni della superiori. Per cui ciò che hai avuto modo di conoscere fino ad adesso diciamo che verrà toccato nei primi corsi del tuo primo anno di studi a matematica, poi scoprirai tutte cose nuove.

Ma cosa può esistere di più complicato di un integrale? Beh, non per forza dobbiamo parlare di cose più complicate, semplicemente diverse. Ti riporto qui di seguito alcuni tra i settori principali della matematica, giusto da aprirti un po’ gli orizzonti:

  • Logica matematica
  • Modellizzazione della realtà
  • Algebra
  • Teoria dei numeri
  • Analisi matematica
  • Fisica matematica
  • Calcolo numerico
  • Geometria e topologia
  • Matematica discreta
  • Ottimizzazione e teoria del controllo
  • Probabilità e calcolo stocastico
  • Dinamica dei fluidi
  • Storia della matematica
  • Matematica ricreativa

e valuta che sono stato parecchio vago in questa lista, dato che per esempio nell’analisi matematica (che è quella di cui hai visto qualcosa in quarta o quinta superiore) ci sono moltissimi settori, dall’analisi delle equazioni differenziali, dei sistemi dinamici, delle equazioni alle derivate parziali, della teoria della misura e molto altro…

Questo preambolo non l’ho fatto per spaventarti, anzi! Semplicemente per farti sapere che la matematica si applica a moltissimi contesti diversi e tutti da scoprire. Se ti interessa approfondire questo tema ti consiglio vivamente di leggerti uno dei seguenti libri:

Trovo che la lettura di questi testi ti porterà ad una scelta molto più informata riguardo il tuo percorso di studi. Ciò non toglie che ci si possa iscrivere un po’ alla cieca come ho fatto io e molti altri immagino, con l’unica motivazione che alle superiori la matematica ci è piaciuta e quindi probabilmente sarà lo stesso anche dopo.

Ah, giusto per condividere qualcosa di personale, io fino a 10 giorni prima di iscrivermi in triennale sono stato convintissimo di iscrivermi alla laurea in informatica, poi in realtà quasi istintivamente sono andato ad iscrivermi a matematica e sono davvero contento della scelta che ho avuto la fortuna di fare. Quindi i consigli che ti sto dando qui sopra non derivano da ciò che ho fatto io, ma da una visione a posteriori che ho adesso avendo ormai fatto 4 anni di corsi di matematica.

Se vuoi un parere diverso dal mio ecco un video:

Analisi del piano di studi della mia triennale

Addentriamoci ora in qualcosa di molto concreto che sono certo che ti sarà utile. Premetto che ogni corso di laurea in matematica e ogni città offrono corsi diversi, tenuti da professori diversi e con attenzione particolare ad aspetti diversi. Ma, soprattutto per il primo anno, bene o male le materie sono le stesse, perché fondanti per ogni percorso.

Quindi ho pensato possa esserti utile l’analisi del mio piano di studi, ovvero elenco degli esami che ho fatto, in laurea triennale. Premetto però che io ho fatto la triennale in matematica applicata (a Verona), quindi mi mancano molti esami più associabili alla matematica pura, come logica o cose relative alla teoria dei numeri, però in compenso ho parecchi corsi più numerici e relativi al calcolo scientifico.

Detto ciò, sappi che ogni università mette a disposizione questo piano di studi sul suo sito, quindi puoi leggerti ciò che ho da dirti nelle prossime righe e poi andare ad incrociare il mio piano con quello delle università a cui sei potenzialmente interessato, cercando di capirlo meglio.

Nelle due immagini precedenti trovi la lista degli esami che ho fatto nella mia laurea triennale. Siccome avevo la possibilità di scegliere alcuni corsi ed ero tentato dal ramo finanziario (per poi scoprire che in realtà non mi piaceva) ho scelto di fare i due corsi che ho evidenziato, che magari mancano ad un po’ di altri percorsi universitari.

Ho omesso la colonna dei professori a cui erano assegnati i corsi perchè non è rilevante per quello che voglio condividere in questo post, se sei curioso puoi andare a cercarteli 😉

Posso già dirti che il primo semestre del primo anno è più o meno simile in tutte le università quindi magari qui ti spiego meglio i corsi:

  • Algebra lineare con elementi di geometria: questo è davvero un corso fondamentale, dovrai mettertelo come priorità a mio parere perché tutto ciò che impari sarà poi utilizzato in ogni corso seguente. Si studiano le principali strutture algebriche e le loro proprietà, come spazi vettoriali, gruppi, matrici, numeri complessi, sistemi lineari e molto altro. Nel programma avevo anche lo studio della geometria proiettiva e delle coniche, questo dipende un po’ dall’università.
  • Analisi 1: Questo è un po’ il corso in cui, se hai fatto bene matematica al liceo, ti troverai più avvantagiato perchè bene o male tutte le cose sono state viste, chiaramente non a livello universitario. Questo era il programma del mio corso di analisi uno: Proprietà dei numeri reali. Successioni e serie numeriche. Limiti. Funzioni continue. Calcolo differenziale per funzioni di una variabile. Calcolo integrale per funzioni di una variabile reale. Introduzione alle equazioni differenziali ordinarie. Topologia della retta reale.
  • Fondamenti della matematica: Questo è un corso davvero utile perché permette di imparare, o comunque prendere la mando, a fare dimostrazioni e le principali strutture logiche necessarie per fare matematica.Nel mio corso si vedevano metodi e concetti fondamentali della matematica, in particolare il metodo della dimostrazione ed il linguaggio degli insiemi.
  • Programmazione con laboratorio: Questo è un corso molto vario ma comunque per me importante perchè mira ad insegnare a scrivere algoritmi, seppur di base, a ragionare come fa un computer e a programmare qualcosina, magari niente di eccessivo ma è comunque davvero importante per capire come costruire procedure algoritmiche. Nel mio corso abbiamo usato un po’ Python e un po’ Java, in seguito Java non l’ho più usato mentre Python l’ho poi recuperato in altre circostanze.

Chiaramente non sto qui a descriverti ogni corso che ho seguito perché penso sarebbe eccessivo, però aggiungo qui sotto la descrizione dei 3 corsi che più mi sono piaciuti:

  • Sistemi dinamici: Il corso tratta vari aspetti dell’analisi qualitativa delle equazioni differenziali ordinarie e introduce alla teoria dei sistemi dinamici continui. Ci si propone di studiare con una certa profondità gli argomenti in programma sia dal punto di vista teorico che sapendo trattare esempi. Sui sistemi dinamici avevo già scritto qualcosa qui sul sito, perchè è un po’ il settore della matematica che preferisco.
  • Analisi 3: Da me, questo corso consisteva nello studio dell’analisi complessa che è molto affascinante perché si discosta molto da quanto visto con l’analisi reale negli anni precedenti ed è ricca anche di aspetti geometrici/visuali interessanti.
  • Dinamica dei fluidi: Questo corso era un’introduzione all’analisi della dinamica dei fluidi, per me molto interessante perchè ho scoperto cosa sono le equazioni di Navier-Stokes e ho potuto applicare le tecniche acquisite negli anni precedenti per applicarle ad una situazione che vedevo più pratica/concreta, ovvero l’analisi delle correnti, dell’aria e così via.

Spero che ti siano interessanti queste descrizioni, poi ti consiglio di approfondire sui siti delle università che ti interessano e facendo ricerche online del tipo “cosa si fa al corso di…”.

Perché iscriversi al corso di laurea in matematica

Siamo arrivati alla fatidica domanda…

Ok, tutto bello, tutti bravi ma perché dovrei iscrivermi a matematica? Allora, visto che è un po’ difficile, almeno a mio parere, capire se ci possano piacere dei corsi di cui sappiamo solo in linea teorica il loro contenuto (come se sapessimo solo leggere l’etichetta di una scatola e volessimo essere in grado di decidere se ci piace il contenuto), direi di rivolgere l’attenzione ad altri aspetti.

Può succedere che tu sappia già che vuoi fare il professore di matematica o magari abbia un familiare che lavora nel settore matematico e allora in quel caso la tua scelta sarà più facile, perché hai un obiettivo che ti piace e vuoi raggiungere e quindi la laurea in matematica è solo una cosa da cui devi passare, in quel caso ho poco da dirti, prova ad iscriverti e vedi come va 🙂

Ho invece dei consigli per chi non vuole basare la sua scelta sulla professione futura, io per esempio non avevo idea di cosa si potesse fare una volta usciti dall’università, mi sono iscritto ( e ne sono contento ) solo pensando a quello che poteva piacermi studiare negli anni successivi.

Quindi, per capire se sei nel mindset che può portarti a vivere sereno una laurea in matematica io ti consiglio di fare 2 cose:

  1. Leggi più libri divulgativi, post sui forum/gruppi Facebook possibili in cui ti fai un attimo un’idea di cosa voglia dire fare matematica. Un buon punto di partenza potrebbe essere questo sito 😉 Non è un problema se non capirai i tecnicismi, è più che normale, la cosa importante è che tu provi a capire “se potrebbe piacerti capire quelle cose”.
  2. Parla con più studenti e laureati possibili, fatti dare consigli e magari vai anche a seguirti una delle prime lezioni di un corso del primo anno, tanto sono tutti ad accesso libero. Così ti fai un’idea di come sia l’ambiente e se ti ci troveresti bene dentro.

Ah…una cosa che ci tengo a dirti, in tutte le realtà universitarie di matematica con cui sono venuto a contatto, c’è un clima molto più informale rispetto a percorsi più umanistici o letterari. Mi spiego meglio, solitamente i corsi sono seguiti da poche persone (ti direi massimo una sessantina in media), adesso sto seguendo corsi in cui siamo in 2 in aula ma questo è un altro discorso ahah, ma comunque questo è molto utile perchè puoi fare più domande ai professori ed essere meno intimorito dagli auditorium completamente pieni.

Altro fattore determinante per scegliere bene, secondo me se ti piace risolvere problemi, matematica (o volendo anche informatica) sono senz’altro ottime scelte per te. 

Non sto qui a soffermarmi sulla differenza tra matematica pura, matematica applicata  e ingegneria matematica, magari facciamo un post a riguardo in futuro.

Ti lascio qui anche un video fatto molto bene da Naum di MathMind riguardo la scelta di matematica:


Sbocchi lavorativi per un laureato in matematica

Forse non te lo aspetteresti ma non riesco a riassumere in 10-15 righe tutti i possibili sbocchi di un matematico, quindi ti rimando ad alcune risorse esterne davvero ricche e ti anticipo che in futuro ne pubblicherò una lista (punto a 50 esperienze) anche qui sul sito.