Archivi autore: Paolo Boldrini

Contare

La matematica conta: storia dei primi numeri

Leggere, scrivere e contare sono tra le attività più importanti che la nostra mente riesce a svolgere e costituiscono la base dello sviluppo umano. In questo articolo analizzeremo l’operazione di contare e il concetto strettemente legato di numero naturale. Mentre lettura e scrittura sono invenzioni relativamente recenti, diffuse a partire dal 3000 a.C. l’usanza del contare ha radici molto più antiche.

Perchè gli uomini hanno iniziato a contare?

Le prime tracce di conteggi risalgono addirittura al paleolitico. I principali reperti che testimoniano questa capacità sono un osso di lupo risalente al 40000 a.C e il cosiddetto osso di Ishago, risalente al 20000 a.C. Entrambi i ritrovamenti presentano delle tacche incise. Mentre per il primo non si può escludere si trattasse di una funzione decorativa; nel caso dell’osso di Ishago, l’asimmetria delle incisioni rende concordi gli studiosi nell’affermare che la finalità non fu estetica ma pratica.

Osso di Ishago

Ma che cosa contavano gli uomini nella preistoria? Non è difficile immaginare quali possano essere le utilità di un tale strumento: per un cacciatore era fondamentale sapere quante lance avesse a disposizione, mentre un raccoglitore era interessato a sapere quanti frutti era stato in grado di trovare in una giornata.
In seguito, con la diffusione dell’agricoltura e dell’allevamento, divenne ancora più importante saper contare: un pastore deve conoscere esattamente la quantità di pecore nel suo gregge, altrimenti rischia di dimenticarne qualcuna! Ah di pecore e numeri naturali ne avevamo parlato anche qui Numeri Naturali: dalle pecore al concetto di numero 😉 .

Piccole e grandi quantità

Nonostante il contare abbia risposto originariamente a problemi pratici, si tratta di un’operazione astratta e tutt’altro che naturale. Essa non va confusa con la capacità di distinguere piccole quantità di oggetti; per comprendere la differenza è sufficiente un rapido esperimento.
Quanti oggetti contengono i seguenti gruppi?

Ovviamente è molto semplice distinguere le differenze, senza la necessità di mettersi effettivamente a contare quante figure sono presenti in ogni insieme.
Questo però funziona solo con piccole quantità: prova a valutare il numero degli oggetti nei seguenti insiemi:

In questo caso è stato certamente più difficile capire il numero “a colpo d’occhio” e probabilmente sarà stato necessario contare le forme a piccoli gruppi di due o tre elementi per avere la certezza del numero totale.

Mentre la capacità di contare sembra essere prerogativa umana, la distinzione tra piccoli gruppi di oggetti è diffusa anche in alcuni animali, soprattutto uccelli. A questo proposito è interessante riportare un racconto risalente al Settecento.

I corvi sanno contare

Il corvo conta fino a 5

Un contadino voleva uccidere un corvo che aveva nidificato in cima a una torre, dentro ai suoi poderi. Ogni volta che si avvicinava, però, l’uccello volava via, fuori dalla portata del suo fucile, finché il contadino non si allontanava. Solo allora l’animale ritornava nella torre, riprendendo le incursioni sui terreni dell’uomo. Il contadino pensò allora di chiedere aiuto a un suo vicino. I due, armati, entrarono insieme nella torre e poco dopo ne uscì soltanto uno. Il corvo però non si lasciò ingannare, e non ritornò al nido finché non fu uscito anche il secondo contadino. Per riuscire ad ingannarlo entrarono poi tre uomini e successivamente quattro e cinque. Ma il corvo ogni volta aspettava che fossero usciti tutti prima di far ritorno al nido. Soltanto in sei finalmente, i contadini ebbero la meglio, infatti il corvo aspettò che cinque di loro fossero usciti e quindi fiducioso rientrò sulla torre, dove il sesto contadino lo uccise.

Stimolati da questo racconto, diversi studiosi si sono interessati dell’effettiva capacità di conto di alcuni animali, in particolare l’etologo tedesco Otto Koehler dimostrò con una serie di esperimenti che il suo corvo, Jacob era in grado di contare fino a 6, quindi al contadino per stanarlo sarebbe servita una persona in più rispetto a quelle del racconto!

Terzetti e numeri naturali

É giunto il momento di interrogarci sul vero significato del contare. Fino ad ora abbiamo dato per scontato un legame tra il processo di conteggio e i numeri naturali. Essi sono talmente basilari che raramente ci soffermiamo sul loro reale significato.


L’idea, apparentemente banale, che sta alla base dei numeri naturali e di conseguenza del conteggio è che un terzetto di pecore, un terzetto di mele e un terzetto di pietre hanno una cosa in comune: il numero 3!
Tuttavia, come spiega il filosofo e matematico Bertrand Russell, nel suo saggio “Introduzione alla filosofia matematica”, non bisogna commettere questo fraintendimento: “Un terzetto d’uomini è un esempio del numero tre, e il numero tre è un esempio di numero; ma il terzetto non è un esempio di numero“.

Tutti i terzetti hanno in comune il numero 3, ma nessuno dei terzetti costituisce il numero 3. Essi sono ben distinti dai duetti e dai quartetti, e ciò che li distingue è proprio il fatto di essere 3. Quindi un numero è la caratteristica comune a tutti gli insiemi costituiti da quel determinato numero di elementi. Il numero 7 per esempio è tecnicamente definito come l’insieme degli insiemi di 7 elementi.

Un’apparente tautologia

Questa affermazione sembra tautologica: come posso sapere il “numero di elementi di un insieme” se non conosco la definizione di numero e non so nemmeno cosa significhi contare?
Immaginiamo di avere duetti, terzetti e in generale insiemi di $n$ elementi, come posso raccogliere tutti quelli con lo stesso numero di elementi senza effettivamente contarli?
Russell utilizza il criterio della corrispondenza biunivoca. Dati due insiemi, essi hanno la stessa cardinalità (numero di elementi) se e solo se è possibile creare una funzione biunivoca tra i due. Ovvero una funzione che ad ogni elemento del primo insieme associa uno e un solo elemento del secondo.

In questo modo è possibile raggruppare gli insiemi con la stessa cardinalità senza presupporre la capacità di contare. Fatto ciò è sufficiente dare un nome agli insiemi di insiemi (1 a quelli di 1 elemento, 2 a quelli di 2 e così via). In questo modo abbiamo definito i numeri in maniera consistente!

Cosa significa contare?

A questo punto resta solo da capire cosa significhi contare. Anche in questo caso è utile ragionare in termini di corrispondenze biunivoche. Soffermiamoci sul caso dell’osso di Ishago, su di esso ogni tacca sta a rappresentare un’unità. Non si sa cosa sia stato contato in questo modo, supponiamo i frutti raccolti durante la giornata. Ad ogni frutto corrisponde una tacca, quindi esiste una corrispondenza biunivoca tra l’insieme dei frutti e l’insieme delle tacche. Astraendo possiamo asserire che l’operazione di contare non è nient’altro che creare una corrispondenza biunivoca tra l’insieme degli oggetti da contare e un sottoinsieme dei numeri naturali!

Se vuoi approfondire ti consiglio l’articolo GEORG CANTOR: QUANTO È INFINITO L’INFINITO? in cui Lorenzo spiega come contare insiemi di infiniti elementi!

Spero che questo articolo ti sia piaciuto, nel prossimo vedremo come il concetto di numero si è evoluto nelle diverse culture. Ospite speciale: il numero 0!

Se ti interessa l’argomento dei numeri, del contare e la matematica più in generale ti consiglio questo libretto leggero ma interessante: L’uomo che sapeva contare

Il triangolo di Tartaglia: smemorati per scelta

Sicuramente alle scuole superiori avrai studiato qualcosa riguardo l’algebra dei binomi, tipico è il quadrato di un binomio: $(a+b)^2=a^2+b^2$. Ovviamente no! Manca un termine molto importante: $2ab$.

Presa da Reddit


In questo articolo cercheremo di capire il motivo per cui questo termine è lì. Inoltre generalizzeremo il risultato per la potenza ennesima di un binomio. Per questa generalizzazione ci verrà in aiuto il Triangolo di Tartaglia 😉


Il caso $(a+b)^2$ è molto semplice, infatti per la proprietà distributiva del prodotto:
$ (a+b)(a+b)=a^2+ab+ab+b^2=a^2+2ab+b^2 $

Analogamente,
$ (a+b)^3=(a+b)^2(a+b)=(a^2+2ab+b^2)(a+b)=a^3+3a^2b+3ab^2+b^3$
Tuttavia man mano che l’esponente aumenta diventa davvero laborioso svolgere tutti i conti, per questo sarebbe molto comodo trovare un metodo più veloce.

Notiamo che ogni addendo del risultato è costituito da due parti: una è il coefficiente, indipendente da $a$ e $b$, l’altra la chiameremo “combinazione”, in quanto è una combinazione di $a$ e $b$, elevati ad un appropriato esponente.

E’ abbastanza facile ricordare come si costruiscono le combinazioni: in un binomio $(a+b)^n$ si parte da $a^nb^0$ e poi si prosegue diminuendo di 1 l’esponente di $a$ e aumentando di 1 quello di $b$, fino ad arrivare alla combinazione simmetrica: $a^0b^n$. Il problema principale è quindi quello di ricordare i coefficienti da mettere davanti ai vari addendi.
Fortunatamente ci viene in soccorso un matematico italiano: Niccolò Fontana. Questo nome ti suona nuovo? Probabilmente lo conosci con il suo soprannome: Tartaglia!


Il soprannome deriva dalla sua balbuzie, sviluppata in seguito ad uno spiacevole incontro con dei briganti avuto a soli 13 anni e che gli causò un trauma cranico. Nonostante gli sia stato attribuito come presa in giro, egli stesso decise di farne un simbolo, utilizzandolo come firma per le sue opere. Oggi ci occupiamo della più celebre: il Triangolo di Tartaglia (conosciuto come Triangolo di Pascal all’estero).

Devi sapere che nel mondo della matematica l’Italia ha svolto e sta svolgendo un ruolo molto importante, non solo con Tartaglia ma anche con altri matematici. Per esempio abbiamo ricevuto 2 Medaglie Fields per meriti matematici, se ti interessa sapere cosa sono leggi questo articolo: Medaglia Fields.

Costruzione del Triangolo di Tartaglia

La costruzione è molto semplice: per prima cosa si numerano le righe a partire da 0 (il motivo sarà chiaro in seguito), poi si dispone una serie di 1: il primo a fare da vertice; gli altri, due per riga, lungo i lati obliqui di un triangolo isoscele (quindi ai due estremi di ogni riga). Infine per riempire la parte centrale è sufficiente ricordare che ogni termine è dato dalla somma dei due valori immediatamente sopra di esso. Per esempio alla riga 2 c’è un 2, ottenuto dalla somma di due 1, mentre i due 10 alla riga 5 derivano dalle somme di 4 e  6 alla riga superiore.

Perchè il Triangolo di Pascal è utile?

Tartaglia fa uso del suo triangolo per problemi di combinatoria, tuttavia esso è anche molto utile per svolgere la potenza di un binomio. In effetti le due cose sono strettamente collegate, ma lo vedremo in seguito.
Per il momento osserviamo solo che i numeri alle righe 2 e 3 sono rispettivamente i coefficienti dei termini di $(a+b)^2$ e $(a+b)^3$. Si può dimostrare che questo vale per ogni riga! Per esempio i coefficienti di $(a+b)^5$ sono i numeri che compaiono alla quinta riga del triangolo. Quindi,
$(a+b)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5$
Molto più veloce rispetto a svolgere manualmente tutti i conti.

Ora risulta chiaro perché abbiamo iniziato a numerare le righe da 0. Infatti $(a+b)^0=1$ mentre $(a+b)^1=1a^1+1b^1$.

Bene, abbiamo visto come il Triangolo di Tartaglia ci può aiutare nello sviluppo di un binomio. Ora soffermiamoci su un caso pratico molto semplice in cui saper svolgere il quadrato o il cubo di un binomio può essere utile.

Fate finta di dover calcolare per qualche motivo $106^2$ e di non avere la calcolatrice a portata di mano. In questo caso è comodo scrivere $106^2=(100+6)^2$ ed applicare il metodo di Tartaglia, quindi il risultato sarà
$100^2+2\cdot 6\cdot 100+6^2=11236$

Oppure, per esempio:
$(63^3)=(60+3)^3=60^3+3\cdot 60^2\cdot 3+3\cdot 60\cdot 3^2+3^3=216000+32400+1620+27=250047$ .


Abbastanza laborioso, ma ci si deve accontentare, è comunque più veloce rispetto a svolgere tutti i calcoli in colonna!

Coefficienti binomiali

Abbiamo detto che Tartaglia fa ampio uso del suo triangolo soprattutto nel campo del calcolo combinatorio; perché le due cose sono legate?
Ragioniamo sul significato dei coefficienti, aiutandoci con un esempio: $(a+b)^3$ . Ci chiediamo, senza svolgere i calcoli, quanti siano i termini con combinazione $a^2b$

La figura mostra il motivo per cui il risultato è 3. Le terne che moltiplicate danno come combinazione $a^2b$ sono infatti $(a,a,b) ; (a,b,a) ; (b,a,a)$ , rispettivamente riquadrate in rosso, blu e verde.

Andiamo in profondità, qual è il significato della domanda che ci siamo posti? Quello che abbiamo fatto è stato fissare una terna: $(a,a,b)$, e andare a contare in quanti modi questa terna può disporsi.
Per calcolare questo risultato basta osservare quante possibilità abbiamo per la prima posizione (3), per la seconda (2) e per la terza (1). Quindi in tutto si hanno $3\cdot 2\cdot 1=6$ possibilità. Però i due termini $a$ sono indistinguibili, di conseguenza dobbiamo anche dividere per il numero di possibili disposizioni delle $a$, in questo caso 2.

Riassumendo l’operazione che ci consente di contare le combinazioni possibili è la seguente:

$\frac{3\cdot 2\cdot 1}{2}=\frac{3!}{2!1!}=\binom{3}{1}$

Questa espressione è detta, guarda caso, coefficiente binomiale e in generale si calcola così

$\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Ogni termine del triangolo di Tartaglia è proprio il coefficiente binomiale di n k dove n è la riga e k la colonna  (partendo da 0), per esempio il 10 è alla riga riga 5 e alla colonna 2, infatti si ottiene calcolando

$\binom{5} {2}=\frac{5!}{2!3!}=10$

Binomio di Newton

In questo modo possiamo scrivere in forma compatta la potenza di un binomio:

$(a+b)^n=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$

Questa formula è il celebre binomio di Newton. Essa è fondamentale in combinatoria, ma ha applicazioni anche in altre branche della matematica

Per esempio in questo articolo Georg Cantor: Quanto è infinito l’infinito? Lorenzo spiega come Cantor abbia dimostrato che l’insieme delle parti di un insieme ha una cardinalità maggiore rispetto alla cardinalità dell’insieme stesso.
Nel caso di insiemi finiti (ovvero costituiti da un numero n di elementi), la cardinalità è esattamente $2^n$, vediamo come provarlo utilizzando la formula di Newton.

Noi sappiamo che $card(X)=n$. L’insieme delle parti di X è l’insieme costituito da tutti i sottoinsiemi di X. Quindi per contare i suoi elementi possiamo per prima cosa contare il numero di sottoinsiemi di X con 0 elementi, poi quelli con 1 elemento e così via, fino a quelli di n elementi. Infine, per trovare il numero totale sarà sufficiente sommare i conteggi parziali.
Ricordando il significato di coefficiente binomiale, il numero di sottoinsiemi con 0 elementi sarà $N_0 =\binom{n}{0}$, con 1 elemento $N_1=\binom{n}{1}$ e così via fino a $N_n=\binom{n}{n}$.
Quindi sommando abbiamo che $card(\mathcal{P}(X))=\sum_{k}^{n} \binom{n}{k}= \sum_{k}^{n} \binom{n}{k}1^{n-k}1^k$ ovvero lo sviluppo con il binomio di Newton di $(1+1)^n=2^n$.

Se ti interessa approfondire questo argomento o qualche altro risultato di Tartaglia ti lascio qualche link interessante qui sotto: