Archivio mensile:Gennaio 2021

Devo essere un genio per studiare matematica?

Beh, chiaramente deve essere un genio!

Ciao. Eccoci con un nuovo articolo. Oggi andremo a rispondere ad una domanda che mi è stata fatta parecchie volte e che ho trovato anche molto richiesta su Quora e altri siti.

La domanda è: “Per studiare matematica, devo essere un genio? Devo essere dotato in maniera innata? Devo essere nato con un quoziente intellettivo parecchio elevato? Oppure chiunque sostanzialmente può andare a studiarla?”.

Intanto, prima di proseguire la lettura, ti ricordo che se preferisci guardare video al leggere articoli, qui trovi la versione video dei contenuti che ho poi trascritto qui sotto :

Beh, l’affermazione con cui ho aperto l’articolo era abbastanza una provocazione chiaramente. Infatti, per quanto mi riguarda, per esperienza personale e per i miei amici che ho conosciuto nei 5 anni di università, non è necessario essere un genio per studiare matematica.

Le tre cose più importanti, per me, sono

  • la determinazione,
  • la passione e
  • l’interesse nel portare avanti questi studi.

E’ innegabile, chiaramente, che esistono persone dotate naturalmente, persone che arrivano prima alla soluzione dei problemi, persone che comprendono prima i risultati matematici della gran parte degli altri. Ovviamente loro sono avvantaggiati nel percorso universitario in matematica.

Però, andiamo un po’ a vedere qual è la definizione classica che puoi trovare su un qualunque dizionario del termine genio.

Solitamente si definisce genio una persona con una spiccata intelligenza, dove questa intelligenza che lo contraddistingue dagli altri, dalla massa, è un qualcosa di innato.

Ovviamente quindi, una persona che abbia questa dote naturale è avvantaggiata nella possibile carriera in quanto matematico o matematica e, in particolare, in quanto studente di questa disciplina.

Tuttavia, secondo me, questo non impedisce agli altri, con lo studio, il dovuto tempo e la fatica, di arrivare ad ottimi risultati. Funziona un po’ come negli sport, dove le capacità innate aiutano ma non sono tutto. Se uno è particolarmente dotato in termini fisici e di talento naturale nel giocare a basket, per esempio, è chiaro che abbia una marcia in più rispetto ad un ragazzo minuto e basetto.

E’ anche chiaro che, in termini probabilistici, questo abbia maggiori possibilità di arrivare in NBA rispetto alla seconda persona.

Però, se questo ragazzo dotato di natura non ci mette impegno, non ci mette dedizione e costanza andandosi ad allenare, andando alle partite e mettendoci la testa, difficilmente arriverà a competere con i grandi del basket.

Cosa diversa invece è se andiamo a vedere quale potrebbe essere la carriera dell’altro ragazzo, quello più minuto. Lui, magari, è molto appassionato, la natura non è dalla sua parte però è determinato, si allena costantemente, continua a migliorare giorno dopo giorno e, soprattutto, punta sul gioco di squadra. Ovvero, fa sue delle capacità che vanno a colmare le lacune che la natura purtroppo gli ha dato..

In parole povere, questo secondo ragazzo non si rassegna al fatto che ci sia qualcuno che è più forte di lui. Invece, continua a lavorare e, magari, un giorno può diventare un ottimo giocatore di serie B o magari anche in serie A .

Insomma, secondo me la cosa importante nello sport come nello studio della matematica, è il voler capire le cose, il voler capire come risolvere un problema e quindi l’essere determinati e costanti nello studio.

Ovviamente il parallelo che ho fatto con lo sport vale in modo limitato, è solo per dare un’idea. E’ evidente che la competizione sportiva non abbia alcun legame nella matematica, dato che il successo di una persona nel risolvere un problema non implica in nessun modo la sconfitta degli altri 😉 . Comunque, penso possa essere sufficientemente esplicativo.

Dai discorsi che ho fatto qui sopra, probabilmente capirai che io non ritengo un motivo valido per rinunciare all’iscrizione all’università di matematica la frase “ma io non vado bene in matematica alle superiori”.

Infatti, se comunque il tuo interesse verso la matematica è forte (intendo verso la matematica, non verso il saper fare i conti correttamente 😉 ), allora secondo me hai tutte le carte in regola per iscriverti e studiare matematica.

Questo era un breve articoletto in cui ho condiviso la mia idea riguardo questo tema. Mi farebbe ovviamente piacere leggere qui sotto nei commenti cosa ne pensi, o se hai qualsiasi suggerimento per nuovi video/articoli.

Con ciò ti saluto e ci leggiamo alla prossima, ciao!

principio del terzo escluso – Cos’e’ e qualche esempio

Ciao. Eccoci con un nuovo articolo. Oggi andremo a continuare la lista di terminologie matematiche spiegate brevemente. In questa sequenza di articoli/video ho previsto contenuti un po’ enciclopedici, in cui cerco di prendere quei termini/concetti che all’università vengono dati per scontati (e magari ti fai anche dei problemi a porre delle domande a riguardo perché pensi siano stupide).

Prima di proseguire, se preferisci guardare video alla lettura, qui trovi il video:

Oggi andremo a vedere che cosa si intende per principio del terzo escluso.Questo è un risultato molto semplice da capire. E’ un principio che è abbracciato in maniera molto aperta da gran parte dei rami della matematica. Vedremo poi però che ci sono anche dei matematici che non lo approvano, che non prendono in considerazione questo principio e sono chiamati matematici costruttivisti.

Il principio del terzo escluso si basa su un’idea molto semplice, o meglio evidenzia un’idea molto semplice: una proposizione matematica può essere o vera o falsa, non può esserci una terza possibilità.

Per esempio, quando sei davanti ad un numero naturale e affermi che è pari, ci sono solo 2 possibilità: hai ragione o hai torto. Infatti un numero naturale o è pari o non lo è, e in tal caso lo chiamiamo dispari. Però non può esserci una terza possibilità, ed ecco perché parliamo di “escludere il terzo”.

Questo è anche il principio che regola fondamentalmente la dimostrazione per assurdo. Infatti l’idea alla base di questa tecnica dimostrativa è di partire da un’assunzione (che solitamente è l’opposto di quello che vogliamo dimostrare) e poi, tramite dei ragionamenti logici e coerenti, arrivare ad una contraddizione.

Da ciò, possiamo dedurre che siccome partendo dall’assunzione di partenza, siamo arrivati ad una contraddizione, allora questa è errata. A questo punto entra a gamba tesa il principio del terzo escluso. Infatti, siccome non c’è alcuna possibilità oltre al fatto che un’assunzione sia errata o corretta, questa contraddizione vuol dire che abbiamo mostrato la validità della tesi.

Occhio però! Abbiamo mostrato la tesi non in modo costruttivo, ma l’abbiamo fatto escludendo l’altro caso possibile. Ecco dove arrivano i matematici costruttivisti, che si rifiutano di accettare risultati mostrati in questo modo e, più in generale, decidono di rinunciare completamente al principio del terzo escluso.

I matematici costruttivisti, vogliono mostrare tutti i risultati in modo costruttivo, ovvero concretamente partire dalle ipotesi e, logicamente, arrivare alla tesi.Detto ciò, magari non hai mai sentito parlare di questo principio, ma probabilmente avrai già utilizzato, magari senza accorgertene, tutti questi concetti di cui abbiamo parlato. Perché? Perché semplicemente è un principio molto ragionevole.

Noi infatti siamo abituati a dare per scontato che un concetto matematico sia o vero o falso. Chiaramente, nel mondo reale, nei problemi della vita concreta, ci sono delle verità opinabili, ci sono delle situazioni dove non c’è solo l’attributo di verità o falsità, e ci sono cose discutibili.

Però in questi casi si parla di “problemi” del linguaggio comune o di situazioni legate alle opinioni, ovvero tutte cose che in matematica non sono ben viste e presenti.

Con ciò spero di aver chiarito il principio del terzo escluso. Ti ricordo poi che se hai altri termini/concetti che ti interesserebbe che trattassi, puoi lasciare tranquillamente un commento qui sotto e proverò a trattarlo in altri video/articoli.

Con ciò ti saluto, e ci leggiamo al prossimo articolo 😉

Davide