Archivio mensile:Novembre 2019

Regali matematica

6 (+1) regali di natale da fare ad un appassionato di matematica

Qualche giorno fa, sulla pagina Instagram, ho fatto la domanda che trovi qui a destra. L’obiettivo era proprio trovare qualche spunto in più per scrivere questo articolo che spero ti sia utile. Fare regali non è mai facile, per cui ho provato a raccogliere qualche idea magari un po’ originale se ti interessa sorprendere qualche amico, parente o chiunque altro sia appassionato di matematica.

Ah..prima di proseguire 😉 In tanti mi hanno detto che come regalo vorrebbero un po’ di CFU o una laurea, purtroppo però non ho alcun link da suggerirvi per comprarli ahah Però posso suggerirvi questi due articoli in cui do qualche consiglio sull’università:

  1. 8 consigli per gestire al meglio l’università di matematica
  2. Libri di testo consigliati per l’università

Ho deciso di organizzare la lista in 6 consigli principali e un settimo aggiuntivo (ecco il perché del +1 nel titolo) che a tanti non sarà utile ma, a seconda dell’età dell’interessato, so che potrebbe esserlo e lo confermano anche i numerosi suggerimenti che ho ricevuto alla domanda qui a destra.

Inoltre ti ricordo che se non segui ancora la pagina Instagram la puoi trovare qui: @mathoneig .

Nella pagina posto ogni giorno una foto con descrizione che ha l’obiettivo di divulgare qualche tema particolare e verso sera troverai anche un meme divertente, per chiudere in allegria la giornata. Ok, quindi cominciamo con i suggerimenti!

1. Libri divulgativi

Partiamo con il consiglio più scontato ma che sono sicuro sarà di grande impatto. Spesso succede che chi è appassionato di matematica lo sia perché gli piace studiarla, gli piace provare a costruire nuove idee e dimostrazioni, ma accade anche molto frequentemente che non abbia mai letto libri divulgativi o davvero molto pochi.

Questo può accadere per vari motivi, primo tra i quali il fatto che la divulgazione sia sottovalutata rispetto alla formazione tecnica. Certo, se vuoi capire nuovi settori della matematica e diventare esperto in quelli non puoi contare di farlo solo leggendo libri divulgativi, ma secondo me questi hanno un grande potere: sanno rendere semplici cose complicate e soprattutto incuriosire verso aspetti della matematica che magari non si conoscono nemmeno.

Per cui come primo punto di questa lista DOVEVO iniziare con i libri divulgativi. Ora te ne suggerirò tre in particolare, però qualche riga più in basso metto il link ad un articolo che avevo scritto in cui ne sono raccolti 50.

Se ti interessa acquistarne qualcuno, ci tengo a farti sapere che Amazon ha appena lanciato Prime Student, l’abbonamento Prime per gli studenti: tutti i benefici di Amazon Prime, ma a metà prezzo – solo EUR 18,00 all’anno.

Non è abbastanza? Hai un periodo d’uso gratuito di 90 giorni. Ti consiglio di sfruttarlo soprattutto se hai intenzione di leggere di più o fare i regali di natale http://bit.ly/sconto_studenti

Prima di iniziare con la lista però, ti lascio una breve puntata di podcast in cui ti parlo del perché, secondo me, leggere libri di divulgazione sia una gran cosa in quanto può aiutarti a riavvicinarti alla lettura e conoscere molte cose nuove riguardo la matematica in maniera leggera, per poi magari approfondirle:

Ecco la lista dei tre principali consigli che mi sento di darti. Ah..per semplicità quando scrivo nei paragrafi qui sotto farò finta che tu voglia farti un regalo, quindi parlo direttamente a te. Se stai cercando qualcosa per un amico, parente o chiunque altro cerca di valutare le cose che ti dico rispetto a lui/lei ovviamente 😉

Altra premessa, tutti i link ai libri qui sotto (e ai prodotti che si trovano su Amazon) sono link di affiliazione, per cui se acquisti direttamente da quelli non spenderai nulla in più ma mi verrà riconosciuta una percentuale, quindi senza alcuno sforzo e spesa aggiuntiva starai anche sostenendo il progetto Mathone e per questo ti ringrazio 😉

Apologia di un matematico

Se è un po’ che non leggi ma ti piacerebbe iniziare a scoprire il mondo della divulgazione e vedere se faccia per te, questo è sicuramente il libro da cui iniziare. Si legge in un pomeriggio, è scorrevole ed è molto ben scritto a mio parere. E’ un breve libro scritto da Hardy sul finire della sua vita, dove ha cercato di dare un senso a ciò che ha fatto per tutta la sua carriera: matematica.

Vuole infatti difendere (apologia vuol dire “difesa”) la matematica, dando spiegazioni dietro al suo motivo di esistere o di essere studiata. Ti consiglio vivamente di leggerlo 🙂

Se vuoi, ti lascio qui il link di Amazon: Apologia di un matematico

Il flauto di Hilbert

Questo libro e il successivo li ho entrambi iniziati ma non ho mai avuto il tempo di finirli, non perchè fossero noiosi (per nulla) ma perché fatalità li avevo presi entrambi in biblioteca in periodi molto impegnati, per cui non ho avuto proprio tempo di finirli. Mi prometto però di leggerli a breve perché sono consigliati da chiunque sia davvero appassionato di divulgazione e, a quanto posso dire dalle prime 50-70 pagine che ho letto, sia questo che il successivo meritano sul serio.

Ovviamente non posso lasciare alcuna recensione, se non dirti che il Flauto di Hilbert è un libro di storia della matematica davvero ben presentata, di scorrevole lettura. E’ più lungo del precedente ma vale di sicuro lo sforzo.

Se vuoi, ti lascio qui il link di Amazon: Il flauto di Hilbert

Gödel, Escher, Bach. Un’eterna ghirlanda brillante. Una fuga metaforica su menti e macchine nello spirito

Come anticipato, anche questo libro l’ho solo iniziato ma merita sul serio e per questo il prima possibile lo riprenderò per completarlo. E’ un viaggio tra matematica, arte, musica e intelligenza artificiale. Davvero un bel libro a quanto ho letto in giro e sentito da molti.

Se vuoi, ti lascio qui il link di Amazon: Gödel, Escher, Bach

Per la lista completa dei 50 titoli suggeriti, nel caso questi non ti piacciano o non ti sembrano adatti, la puoi trovare qui: I 50 migliori libri di matematica.

2. Lavagna a muro

Questa è stata una grande aggiunta alla mia camera quasi un paio d’anni fa. Certo, serve spazio, ma se hai un po’ di muro libero (o sei disposto a liberarlo), ti assicuro che studiare dimostrazioni o risolvere esercizi alla lavagna è un’altra cosa. Un lato molto positivo di avere una lavagna a muro è che nei pomeriggi di studio intenso, magari poco prima di un esame, ti sarà pesante stare ore e ore seduto a studiare o provare a riscrivere dimostrazioni, quindi è molto utile (per la mia esperienza) alternare momenti seduto a momenti in cui ti alzi, continuando a ripassare ma questa volta scrivendo alla lavagna.

Io l’ho presa anche per fare video su Youtube, che da gennaio 2020 riprenderanno ad uscire (con regolarità) quindi ti consiglio intanto di iscriverti al canale da qui: Mathone Video.

A dirti la verità io non l’ho comprata su Amazon ma, grazie ad un amico, sono riuscito a recuperare una lavagna che era stata restituita perché leggermente difettosa. Ma prima di avere questa occasione mi sono informato parecchio sulle migliori possibilità che Amazon aveva da offrire e quindi qui di seguito ti riporto le 3 sulle quali al tempo ero indeciso, soprattutto leggendo le descrizioni e le recensioni lasciate dai clienti nei commenti.

Intanto ti lascio i pennarelli che ho provato e che continuo a ricomprare quando si scaricano perché mi trovo davvero bene, li trovi qui: Pennarelli cancellabili.

Per la ragione dei pennarelli più economici, ho optato per una lavagna bianca. Sarebbe molto figo anche avere una classica lavagna nera dove si può scrivere con gessi o pennarelli a gesso liquido (che costano un botto), però i gessi li ho provati per un paio d’anni in camera (avevo attaccato un foglio di lavagna adesiva alla scrivania che trovi qui: Lavagna adesiva) ma dopo un po’ la camera diventava invivibile per sporco e polvere di gesso ovunque 😉

Passiamo quindi ai consigli sulle Whiteboards:

AmazonBasics – Lavagna magnetica bianca, cancellabile a secco, con supporto porta-pennarelli e bordi in alluminio, 120 cm x 90 cm:

Se vuoi guardare le recensioni e descrizioni su Amazon clicca qui: LINK AMAZON.

Nobo 1903772 Lavagna magnetica cancellabile a secco, Kit di montaggio incluso, Bianco, 58.5 x 43 cm:

Se cerchi qualcosa di più piccolino, economico ma comunque funzionale questa potrebbe essere giusta per te: LINK DI AMAZON.

Bi-Office Maya – Lavagna Magnetica Bianca, 120 x 90 cm, Con Cornice In Alluminio, Superficie Magnetica Acciaio Laccato:

Questa mi è sempre piaciuta, era quella per cui propendevo maggiormente e la puoi vedere qui: LINK AMAZON.

3. Accessori matematici

Questa è la sezione per cui ho ricevuto più messaggi. Me ne sono arrivati alcuni in cui si parlava di sciarpe a forma di Nastro di Moebius, cappelli a forma di Bottiglia di Klein, lampade a forme particolari, soprammobili curiosi per un appassionato di matematica e chi più ne ha più ne metta.

Ho quindi fatto una ricerca su Google riguardo alcuni accessori che potrebbero piacere ad un matematico e alcuni sono davvero fighi, ti metto qui sotto per ognuno di questi 5 link per andare a guardarlo ed un’immagine. Sono tutti cliccabili e se hai qualche ulteriore aggeggino da suggerire sarebbe molto interessante se lo scrivessi sotto all’articolo in un commento 😉

Tutti questi li puoi trovare su Amazon perché ho pensato anche ai tempi di spedizione più ragionevole, se invece sei disposto ad aspettare anche 5-6 settimane di consegna, ho trovato questo negozio di gadget molto ricco che però, spedendo dall’Inghilterra, mi sono ben guardato dal citarlo qui sotto perché le attese salgono parecchio. Ma se può interessarti ecco anche quel negozio: https://mathsgear.co.uk/

1. Forma per dolci a forma di PI Greco

Questo devo ammettere che è una genialata, per una bella torta a tema matematico ci sta perfettamente: STAMPO PER TORTA.

2. Tazza bianca per il caffè o il tè a tema matematico

Ecco il link di una tazza che ho creato apposta per noi appassionati di matematica 😉 : LINK ALLA TAZZA.

3. 3D Illusione Lampada Bottiglia di Klein Luce notturna USB 7 colori LED

Ecco una delle cose che mi avete suggerito maggiormente nella storia di Instagram, devo ammettere che non è male l’idea di averne una in camera 😉 La trovi qui: LINK AMAZON.

Stando a tema bottiglia di Klein, puoi trovare anche questa, un po’ più sobria ma sempre bella: STAMPA 3D.

4. Orologio a tema matematico

Qui va a gusti, o piace o non piace, però anche questo in molti me l’avete suggerito su Instagram per cui, perché non metterlo? Lo puoi trovare qui: LINK OROLOGIO.

5. Pendoli sincronizzati

Questo è davvero bello, di test ne potete fare un mondo e ti lascio qui sotto un video sulla sincronizzazione di questi pendoli da cui potrete prendere spunto per divertirvi…ah il link è qui: LINK PENDOLO

4. Rompicapo in legno (e non)

Questa sezione non mi è stata suggerita da nessuno su Instagram, con mia gran sorpresa in realtà. Spesso a chi piace la matematica piace ragionare, piacciono i problemi, gli indovinelli e…i rompicapo! Perché no!

Io non ne ho testati molti di rompicapo ma nel momento in cui me ne si presenta uno davanti mi intestardisco sopra e ci perdo un botto di tempo, quindi o lo riesco a risolvere o dopo un po’ mi arrendo e voglio cercare la soluzione online (il grande potere di Youtube).

Qualche anno fa avevo anche registrato un video in cui ne risolvevo uno su Youtube 😉 ora non lo trovo più quindi immagino che lo avessi cancellato poco dopo, era registrato al volo tanto per…più che altro per essere certo di sapere dove recuperare la soluzione nel caso mi fosse interessato riprovare a farlo. Da qualche parte ce l’ho ancora, sono sicuro ahah.

I rompicapo che ho in casa o che ho testato provengono tutti da mercatini che trovavo prevalentemente quando ero in vacanza, però per curiosità ho fatto una ricerca online e ho trovato una piattaforma che li vende molto interessante e seria. Mi sono anche sentito con il proprietario e devo dire che si vede proprio che ci tiene a quel sito e ai rompicapo 🙂

Se può interessarti l’idea di regalare o regalarti un rompicapo in legno ( e non ) ti consiglio di dare un’occhiata al loro sito: https://www.logicagiochi.com/it/prodotti/rompicapo-in-legno .

Ti lascio qui sotto l’immagine di un paio di rompicapo che ho testato:

Di questo avevo fatto la video risoluzione, è una figata 😉 Si chiama Rompicapo Evasione

5. Maglietta con stampa matematica

Di magliette con meme, citazioni e immagini divertenti sulla matematica se ne trovano un’infinità online e, se ti piace la matematica e vuoi vantartene, perché non prendersi una maglietta che magari in pochi sono in grado di capire? 😉

A dirti la verità ogni tanto mi viene anche in mente di creare un negozio online del genere con prodotti e magliette matematiche, magari più avanti lo faccio dai 🙂 Se ti piacerebbe magari scrivimelo nei commenti e dammi qualche consiglio che mi farebbe di sicuro comodo!

Siccome non devo certo stare qui a presentarti e spiegarti cosa sia una maglietta sulla matematica, ti lascio qui sotto le immagini cliccabili di alcune magliette simpatiche, inoltre dal link che trovi qui potrai anche accedere alla ricerca “maglietta matematica” su Amazon, te l’ho preparata nel caso ti interessi la tipologia 😉 : http://bit.ly/magletteMate

6. Abbonamento brilliant.org

In pochi conoscono brilliant.org (con questo link hai il 20% di sconto) ma questo è un sito che consiglio sempre quando ne ho l’occasione. E’ ricco di sfide, corsi, indovinelli e cose divertenti da scoprire. E’ una piattaforma dedicata all’approfondimento di matematica, fisica, informatica e molto altro ed il tutto è fatto in maniera coinvolgente e divertente.

La piattaforma consente di accedere ai contenuti anche in maniera gratuita ed io faccio così quando ho tempo, non ho mai testato l’abbonamento a pagamento onestamente. Ma a quanto ho potuto leggere online, vedere su Youtube e a quanto dicono sulla loro pagina web direi che per uno che ha del tempo libero ed è appassionato delle varie tematiche matematiche direi che sarebbe un bel regalo da ricevere.

Per cui se non conosci il servizio/piattaforma ti lascio qui sotto il video introduttivo al corso sulla relatività, giusto per farti un’idea del loro bello stile , mentre più in basso troverai un link per andare a vedere la piattaforma ed eventualmente regalare l’abbonamento a qualcuno (anche a te se ti va 😉 ). Qui ti dico chiaramente che non ho alcuna affiliazione, te lo consiglio semplicemente perchè lo trovo sul serio un bel modo di apprendere e mettersi alla prova.

Ecco il link al sito di brilliant: https://brilliant.org/ (con questo link hai il 20% di sconto)

(+1) Calcolatrice grafica

Il motivo per cui ho messo questa voce come punto aggiuntivo (+1) è perché a molti probabilmente non servirebbe a nulla questo oggetto (a me per esempio, non saprei come usarla), però ho ricevuto molte risposte su Instagram in cui mi veniva detto che sarebbe molto apprezzata come regalo. Mi immagino per esempio che tanti ragazzi che dovranno affrontare la maturità quest’anno o in futuro sanno cosa farsene e come usarla 😉

Per cui semplicemente qui sotto ti riporto le 3 migliori calcolatrici grafiche in base alle Recensioni su Amazon, che sono solitamente ciò che guardo prima di un acquisto, ovviamente dopo aver sentito il parere di amici o partenti nel caso loro abbiano già usato il prodotto.

Ecco qui le 3 calcolatrici grafiche migliori secondo Amazon. Invece di mettertele in ordine di Recensioni positive, visto che sono tutte ottime da quel punto di vista, te le metto in ordine crescente di prezzo:

Casio FX-9750 GII Calcolatrice Grafica senza CAS, Ampio Display Monocromatico a 8 Righe, 61kB RAM, Blu Scuro

Ecco il link di Amazon per scoprire i dettagli di questo modello: LINK AMAZON.

Casio FX-CG50 Calcolatrice Grafica senza CAS con Display a 65.000 Colori, Grafici 3D e Alimentazione a Batteria

Ecco la pagina Amazon del prodotto: LINK AMAZON.

Texas Instruments TI-Nspire CX – Calcolatrice Grafica Scientifica Schermo Colori Con Touchpad

Ecco il link di Amazon per le recensioni: LINK AMAZON.

Con ciò la lista dei consigli termina qui, spero di averti dato qualche spunto interessante per fare o farti un bel regalo. Se pensi che questo articolo possa piacere a qualche tuo amico condividilo, basta anche una storia con lo screen all’articolo taggando la pagina @mathoneig 😉 su Instagram!

La matematica conta: storia dei primi numeri

Leggere, scrivere e contare sono tra le attività più importanti che la nostra mente riesce a svolgere e costituiscono la base dello sviluppo umano. In questo articolo analizzeremo l’operazione di contare e il concetto strettemente legato di numero naturale. Mentre lettura e scrittura sono invenzioni relativamente recenti, diffuse a partire dal 3000 a.C. l’usanza del contare ha radici molto più antiche.

Perchè gli uomini hanno iniziato a contare?

Le prime tracce di conteggi risalgono addirittura al paleolitico. I principali reperti che testimoniano questa capacità sono un osso di lupo risalente al 40000 a.C e il cosiddetto osso di Ishago, risalente al 20000 a.C. Entrambi i ritrovamenti presentano delle tacche incise. Mentre per il primo non si può escludere si trattasse di una funzione decorativa; nel caso dell’osso di Ishago, l’asimmetria delle incisioni rende concordi gli studiosi nell’affermare che la finalità non fu estetica ma pratica.

Osso di Ishago

Ma che cosa contavano gli uomini nella preistoria? Non è difficile immaginare quali possano essere le utilità di un tale strumento: per un cacciatore era fondamentale sapere quante lance avesse a disposizione, mentre un raccoglitore era interessato a sapere quanti frutti era stato in grado di trovare in una giornata.
In seguito, con la diffusione dell’agricoltura e dell’allevamento, divenne ancora più importante saper contare: un pastore deve conoscere esattamente la quantità di pecore nel suo gregge, altrimenti rischia di dimenticarne qualcuna! Ah di pecore e numeri naturali ne avevamo parlato anche qui Numeri Naturali: dalle pecore al concetto di numero 😉 .

Piccole e grandi quantità

Nonostante il contare abbia risposto originariamente a problemi pratici, si tratta di un’operazione astratta e tutt’altro che naturale. Essa non va confusa con la capacità di distinguere piccole quantità di oggetti; per comprendere la differenza è sufficiente un rapido esperimento.
Quanti oggetti contengono i seguenti gruppi?

Ovviamente è molto semplice distinguere le differenze, senza la necessità di mettersi effettivamente a contare quante figure sono presenti in ogni insieme.
Questo però funziona solo con piccole quantità: prova a valutare il numero degli oggetti nei seguenti insiemi:

In questo caso è stato certamente più difficile capire il numero “a colpo d’occhio” e probabilmente sarà stato necessario contare le forme a piccoli gruppi di due o tre elementi per avere la certezza del numero totale.

Mentre la capacità di contare sembra essere prerogativa umana, la distinzione tra piccoli gruppi di oggetti è diffusa anche in alcuni animali, soprattutto uccelli. A questo proposito è interessante riportare un racconto risalente al Settecento.

I corvi sanno contare

Il corvo conta fino a 5

Un contadino voleva uccidere un corvo che aveva nidificato in cima a una torre, dentro ai suoi poderi. Ogni volta che si avvicinava, però, l’uccello volava via, fuori dalla portata del suo fucile, finché il contadino non si allontanava. Solo allora l’animale ritornava nella torre, riprendendo le incursioni sui terreni dell’uomo. Il contadino pensò allora di chiedere aiuto a un suo vicino. I due, armati, entrarono insieme nella torre e poco dopo ne uscì soltanto uno. Il corvo però non si lasciò ingannare, e non ritornò al nido finché non fu uscito anche il secondo contadino. Per riuscire ad ingannarlo entrarono poi tre uomini e successivamente quattro e cinque. Ma il corvo ogni volta aspettava che fossero usciti tutti prima di far ritorno al nido. Soltanto in sei finalmente, i contadini ebbero la meglio, infatti il corvo aspettò che cinque di loro fossero usciti e quindi fiducioso rientrò sulla torre, dove il sesto contadino lo uccise.

Stimolati da questo racconto, diversi studiosi si sono interessati dell’effettiva capacità di conto di alcuni animali, in particolare l’etologo tedesco Otto Koehler dimostrò con una serie di esperimenti che il suo corvo, Jacob era in grado di contare fino a 6, quindi al contadino per stanarlo sarebbe servita una persona in più rispetto a quelle del racconto!

Terzetti e numeri naturali

É giunto il momento di interrogarci sul vero significato del contare. Fino ad ora abbiamo dato per scontato un legame tra il processo di conteggio e i numeri naturali. Essi sono talmente basilari che raramente ci soffermiamo sul loro reale significato.


L’idea, apparentemente banale, che sta alla base dei numeri naturali e di conseguenza del conteggio è che un terzetto di pecore, un terzetto di mele e un terzetto di pietre hanno una cosa in comune: il numero 3!
Tuttavia, come spiega il filosofo e matematico Bertrand Russell, nel suo saggio “Introduzione alla filosofia matematica”, non bisogna commettere questo fraintendimento: “Un terzetto d’uomini è un esempio del numero tre, e il numero tre è un esempio di numero; ma il terzetto non è un esempio di numero“.

Tutti i terzetti hanno in comune il numero 3, ma nessuno dei terzetti costituisce il numero 3. Essi sono ben distinti dai duetti e dai quartetti, e ciò che li distingue è proprio il fatto di essere 3. Quindi un numero è la caratteristica comune a tutti gli insiemi costituiti da quel determinato numero di elementi. Il numero 7 per esempio è tecnicamente definito come l’insieme degli insiemi di 7 elementi.

Un’apparente tautologia

Questa affermazione sembra tautologica: come posso sapere il “numero di elementi di un insieme” se non conosco la definizione di numero e non so nemmeno cosa significhi contare?
Immaginiamo di avere duetti, terzetti e in generale insiemi di $n$ elementi, come posso raccogliere tutti quelli con lo stesso numero di elementi senza effettivamente contarli?
Russell utilizza il criterio della corrispondenza biunivoca. Dati due insiemi, essi hanno la stessa cardinalità (numero di elementi) se e solo se è possibile creare una funzione biunivoca tra i due. Ovvero una funzione che ad ogni elemento del primo insieme associa uno e un solo elemento del secondo.

In questo modo è possibile raggruppare gli insiemi con la stessa cardinalità senza presupporre la capacità di contare. Fatto ciò è sufficiente dare un nome agli insiemi di insiemi (1 a quelli di 1 elemento, 2 a quelli di 2 e così via). In questo modo abbiamo definito i numeri in maniera consistente!

Cosa significa contare?

A questo punto resta solo da capire cosa significhi contare. Anche in questo caso è utile ragionare in termini di corrispondenze biunivoche. Soffermiamoci sul caso dell’osso di Ishago, su di esso ogni tacca sta a rappresentare un’unità. Non si sa cosa sia stato contato in questo modo, supponiamo i frutti raccolti durante la giornata. Ad ogni frutto corrisponde una tacca, quindi esiste una corrispondenza biunivoca tra l’insieme dei frutti e l’insieme delle tacche. Astraendo possiamo asserire che l’operazione di contare non è nient’altro che creare una corrispondenza biunivoca tra l’insieme degli oggetti da contare e un sottoinsieme dei numeri naturali!

Se vuoi approfondire ti consiglio l’articolo GEORG CANTOR: QUANTO È INFINITO L’INFINITO? in cui Lorenzo spiega come contare insiemi di infiniti elementi!

Spero che questo articolo ti sia piaciuto, nel prossimo vedremo come il concetto di numero si è evoluto nelle diverse culture. Ospite speciale: il numero 0!

Se ti interessa l’argomento dei numeri, del contare e la matematica più in generale ti consiglio questo libretto leggero ma interessante: L’uomo che sapeva contare

La ruota quadrata : nascita del problema e una sua analisi

La ruota è considerata una delle invenzioni più rivoluzionarie della storia dell’uomo. Ha subito numerosi perfezionamenti nel tempo, ma la forma è rimasta sempre inalterata: un cerchio. Per questo motivo, una ruota di forma differente sembra un’idea bizzarra e inutile, men che meno una ruota quadrata.

Nascita del problema della ruota quadrata

Ora immaginate di trovarvi nell’antico Egitto, e per la costruzione di un edificio dovete spostare dei pesantissimi blocchi di roccia squadrati. Quale potrebbe essere il metodo più efficace?

Gli antichi egizi notarono una cosa: se tagliavano in più parti dei tronchi di legno, e li disponevano per terra uno a fianco dell’altro, i blocchi potevano rotolare! Era la prima formulazione e soluzione approssimativa del problema: “Quale dovrebbe essere la forma della strada per far si che una ruota quadrata rotoli regolarmente?”.

Risoluzione analitica

Perchè le ruote rotolano? Tutta la loro efficienza deriva dal fatto che il loro baricentro rimane sempre alla stessa altezza, e che il peso è sempre perfettamente concentrato nel suo punto d’appoggio. Quindi, dobbiamo trovare un pavimento che permetta le stesse caratteristiche anche a una ruota quadrata.

Vi invito a provare a risolvere questo problema, è necessario solo sapere un po’ di matematica da quinta liceo e avere un buon intuito.

Cerchiamo l’equazione di un singolo dosso, che permetta il rotolamento a una ruota quadrata di lato 2 (questo aiuta la risoluzione semplificando i calcoli). Il baricentro deve rimanere sempre alla stessa altezza.

rappresentazione analitica del problema

Ecco in breve i passaggi risolutivi. Se affrontati senza timore, ci ricompenseranno, scoprendo una proprietà molto interessante di questa curva. Tranquilli, io cercherò di essere il più chiaro possibile, ma se la sola vista di integrali e equazioni differenziali vi causa un pochino di nausea, potete tranquillamente scrollare al prossimo sottotitolo, nessuno lo verrà mai a sapere. Forse 😉

Chiamiamo $B$ il segmento che unisce il baricentro del quadrato al punto di appoggio con la curva. La richiesta è che il baricentro sia sempre alla stessa altezza, quindi che $f(x) + B = \kappa$ dove $\kappa$ è una costante. Si nota facilmente che l’altezza deve essere esattamente metà della diagonale del quadrato, quindi $\kappa = \sqrt{2}$. Siamo sulla buona strada, dopo aver ottenuto $f(x) + B = \sqrt{2} $ , dobbiamo solo capire come varia $B$ rispetto a $f(x)$.

Se applichiamo il teorema dei seni al triangolo (guardate la figura qua sopra), otteniamo che $\frac{\sqrt{2}}{sin(90+\alpha)}=\frac{B}{sin(45°) }$ quindi che $B=\frac{1}{sin(90+\alpha)}$. Sostituiamo $sin(90°+\alpha)=cos(\alpha)$ e otteniamo $B=\frac {1}{cos(\alpha)}$. In seguito, sappiamo che il lato del quadrato è tangente alla curva, quindi che l’angolo $\alpha$ dipende dalla derivata della funzione. In particolare, $\alpha=\arctan{(f'(x))}$ . Ora ci siamo quasi.

Ripartendo da $f(x)+B= \sqrt{2} $, sostituiamo tutti i calcoli e otteniamo $ f(x) + \frac{1} {cos(arctan[f'(x)])} = \sqrt{2}$

Qui vengono in aiuto delle comode formule sulle funzioni goniometriche composte, in particolare $cos(arctan(x))=\frac {1} {\sqrt {1+x^2}}$

Sostituendo tutto, otteniamo che $f(x)+\sqrt {1+[f'(x)]^2} = \sqrt{2}$, una equazione differenziale piuttosto minacciosa. Per trovare la sua soluzione esatta ci manca solo un valore numerico. Per esempio, se vogliamo ottenere la curva simmetrica rispetto all’asse delle ascisse, $f'(0)=0$, è abbastanza intuitivo. Così otteniamo il seguente problema di Cauchy, sempre piuttosto minaccioso.

$\begin {cases}f(x)+\sqrt {1+[f'(x)]^2} = \sqrt{2} \\f'(0)=0\end{cases}$

A questo punto, Wolfram Alpha non è poi una cattiva idea. Tuttavia, se siamo proprio coraggiosi, possiamo proseguire e notare che nell’espressione compare solo $f(x)$ e mai la $x$, quindi è un’equazione differenziale a variabili separabili. Basta elevare tutto alla seconda per sbarazzarsi della radice, isolare $f'(x)$, separare $dy$ e $dx$ e integrare da entrambe le parti; una passeggiata praticamente.

Soluzione

Adesso che abbiamo risolto il problema, con o senza qualche aiutino, arriva la parte interessante. L’equazione del pavimento che permetterebbe a una ruota quadrata di rotolare è la seguente: $f(x) = \sqrt{2}-\frac{1}{2}(e^x + e^{-x})$, ovvero $f(x) = \sqrt{2} -\ cosh{(x)}$; vi ricorda qualcosa questa funzione? Siamo davanti a una catenaria!

(Nel caso non conosciate questo tipo di curva, vi invito a dare un’occhiata a questo articolo: La catenaria: una curva ricca di proprietà e che piace alla natura).

Bene. Una ruota quadrata rotolerebbe perfettamente su un pavimento fatto di catenarie rovesciate, ovvero la stessa figura che forma una catena tenuta sospesa tra due pali. Aspetta un secondo, perchè?? I due problemi sono correlati? Sarà una coincidenza? No, non fidatevi mai delle coincidenze della matematica.

Stiamo guardando la stessa situazione da 2 diversi punti di vista. La catena si dispone in modo che tutto il suo peso sia egualmente distribuito in ogni punto. In modo analogo, il baricentro della ruota quadrata, mentre rotola, coincide sempre con il punto d’appoggio, dunque il suo peso è egualmente distribuito in ogni punto della superficie sottostante. Di conseguenza, è chiara la correlazione tra le due curve, dubitate sempre delle coincidenze!

Inoltre, questa è esattamente la stessa proprietà per la quale la catenaria viene utilizzata in architettura: distribuire uniformemente il peso di un ponte o di un arco, per rendere più stabile e resistente la struttura.

Esempio dell’utilizzo di catenarie in architettura

Possibili applicazioni della ruota quadrata

Adesso, se fossimo nell’antico Egitto, saremmo in grado di spostare i nostri massi con il minimo sforzo e poter costruire il nostro bell’edificio. Ma a noi, a cosa è servito?

Analizzare e risolvere un problema ci permette di studiare e capire un modello semplificato. Con tutto ciò che abbiamo appreso, possiamo studiare situazioni simili, dalla maggiore complessità, ma più reali.

Per esempio, quale sarebbe la forma migliore per uno pneumatico da competizione per moto? Rotondo sì, ma se consideriamo la sua sezione? Bisogna avere una forma che permetta alla moto, anche se a grandi angoli di piega, di garantire la massima aderenza con il terreno.

Sezione di uno pneumatico da moto

Sapreste dire quale equazione descrive il profilo dello pneumatico? O almeno quale sarebbe quello matematicamente ideale? Sicuramente ci troviamo davanti a un problema molto più complesso, nel quale entrano in gioco molte più variabili da tener conto. I diversi angoli di piega, la deformazione della gomma, la pressione interna… Ma aver risolto precedentemente il problema della ruota quadrata almeno ci fornisce indizi per approcciare il problema. Se siete appassionati di moto, vi lascio un video youtube a riguardo, da un punto di vista più fisico e ingegneristico, che personalmente ho trovato molto interessante:

Se invece siete più interessati solo all’aspetto matematico, potete provare a risolvere lo stesso problema non solo per una ruota quadrata, ma anche per una pentagonale, esagonale… Potete generalizzare e trovare la soluzione per un qualsiasi poligono regolare al variare del numero dei lati e delle sue dimensioni. Le ipotesi di partenza sono molto simili, diventa solo via via sempre più complesso. Vi sorprenderà forse sapere che la catenaria non salta fuori solo nello studio di una ruota quadrata, ma da qualsiasi tipo di ruota poligonale, con dei parametri leggermente variati. Se davvero vi siete innamorati dell’idea di trovare pavimenti per qualsiasi tipo di ruota, sono un po’ preoccupato per voi, ma vi lascio un articolo qua sotto che analizza il caso più generale possibile.

Per concludere, visto che abbiamo tanto parlato di ruota quadrata di qua e ruota quadrata di là, ma ancora non avete visto una sua applicazione, vi lascio qua sotto il video di una bicicletta bizzarra che scorre in modo perfettamente regolare su un pavimento composto da dossi:

Risorse per approfondire l’argomento

Generalizzazione totale: esiste un pavimento per ogni possibile ruota? https://www.researchgate.net/publication/254616950_Roads_and_Wheels

Il problema della ruota quadrata (esame di maturità 2017): https://redooc.com/it/superiori/matematica-maturita/soluzioni-matematica-maturita-2017/maturita-2017-problema-1-soluzione#problema1-introduzione

Spazio di Hilbert (PARTE 1) : concetti base e cenni storici

Magari ti è già capitato di sentire nominare Hilbert, ma a meno che tu non abbia già seguito un corso di analisi funzionale o qualcosa di analogo, probabilmente non sai cosa sia uno spazio di Hilbert.

Andremo quindi alla scoperta di questi particolari spazi, vedendone un po’ di storia, una caratterizzazione formale e rigorosa, le principali proprietà, alcuni esempi e per finire introdurremo l’importante concetto di Serie di Fourier generalizzata parlando di proiezioni.

In questo articolo lascerò da parte gli ultimi tre punti di questa lista, “limitandomi” quindi a introdurre alcuni concetti base e a fare un preambolo storico, perché altrimenti verrebbe troppo lungo. Termineremo quindi questo percorso alla scoperta degli spazi di Hilbert in un secondo episodio che scriverò tra non molto. Se vedo che sarebbe troppo lungo anche il secondo non si sa mai che lo spezzi in un ulteriore terzo, tanto di cose da dire ce ne sarebbero una marea 😉

Di strada da fare quindi ne abbiamo parecchia, ma cercherò di renderla il più scorrevole e piacevole possibile quindi, cosa stiamo aspettando?! Iniziamo con il succo dell’articolo!

Prima di iniziare ti lascio una piccola legenda della notazione matematica che userò, e che è usata classicamente, per rendere il testo più scorrevole (nel caso tu non ci fossi già abituato):

  • $v\in V$ vuol dire che l’elemento $v$ appartiene all’insieme $V$
  • $\exists x\in X$ significa che esiste una $x$ nell’insieme $X$
  • $\forall x\in X$ sta ad indicare per ogni $x$ dell’insieme $X$.

Definizioni e concetti base che useremo per scoprire gli spazi di Hilbert

Per poter parlare di spazi di Hilbert, è necessario che alcuni concetti siano noti, vediamo quindi di sintetizzarli in questo paragrafo 😉 . Non voglio fare sbrodoloni inutili in questa sezione, per cui tutte queste nozioni sono organizzate qui sotto in maniera sintetica ma più che sufficiente per capire il seguito dell’articolo e soprattutto le prossime puntate.

Spazio vettoriale su $\mathbb{R}$

Diciamo spazio vettoriale rispetto al campo $\mathbb{R}$ un insieme $V$, i cui elementi saranno chiamati vettori, equipaggiato di due operazioni

$+ : V\times V\rightarrow V$ e $* : \mathbb{R}\times V \rightarrow V$ tali che soddisfino le seguenti proprietà:

  • $(V,+)$ è un gruppo abeliano, ovvero:
  1. Esiste un elemento neutro $0_V$ rispetto a $+$, quindi esiste $0_V$ tale che $a+0_V=a\,\forall a\in V$.
  2. Esiste un elemento inverso rispetto a $+$, quindi esiste un $\bar{a}$ tale che $a+\bar{a}=0_V\,\forall a\in V$.
  3. L’operazione $+$ è associativa, ovvero $(a+b)+c=a+(b+c)$, $\forall a,b,c\in V$.
  4. Vale la proprietà commutativa (perché è abeliano): $a+b=b+a$, $\forall a,b\in V$.
  • Vale la proprietà distributiva tra $*$ e $+$:
  1. $k*(a+b) = k*a + k*b$, $\forall a,b\in V,\,k\in\mathbb{R}$.
  2. $(k+m)*a = k*a + m*a$, $\forall k,m\in\mathbb{R},\,a\in V$.
  • Proprietà di neutralità
  1. Se $1_{\mathbb{R}}*k = k\,\forall k\in\mathbb{R}$, allora deve valere che $1_{\mathbb{R}}*a=a\,\forall a\in V$.

P.S. Ci tengo a sottolineare che le due operazioni $+$ e $*$ non sono necessariamente le classiche addizione e moltiplicazione che siamo abituati a usare con i numeri reali. Si possono definire le più svariate operazioni sullo spazio $V$, purché la terna $(V,+,*)$ soddisfi le proprietà elencate qui sopra 🙂 . D’ora in poi parleremo di spazio vettoriale $V$ per denotare questa terna, quindi si sottintende che esso sia equipaggiata di due operazioni come sopra.

Prodotto scalare

Dato uno spazio vettoriale $V$ possiamo introdurvi un prodotto scalare, che è un’operazione tra elementi $v,w\in V$ che soddisfa alcune proprietà. Vediamo quindi come definirlo:

Un prodotto scalare sullo spazio vettoriale $V$ è un’operazione $\langle\cdot\,,\,\cdot\rangle : V\times V\rightarrow \mathbb{R}$ tale che

  1. $\langle v,v \rangle \geq 0$ per ogni $v\in V$, ovvero è un’operazione definita positiva, in particolare è $=0$ se e solo se $v=0_V$.
  2. Sia simmetrica, ovvero $\langle v,w\rangle = \langle w,v\rangle$ per ogni $v,w\in V$.
  3. Sia bilineare, data la simmetria però basta la linearità rispetto al primo termine:
  • $\langle kv,w \rangle = k\langle v,w\rangle$ per ogni $k\in\mathbb{R}$ e $v,w\in V$.
  • $\langle v+v’,w\rangle = \langle v,w \rangle + \langle v’,w\rangle.$

Si dice il prodotto scalare essere degenere, e quindi non ben definito, se esiste un vettore $w\neq 0$ tale che

$\langle v,w \rangle = 0$ per ogni $v\in V$, ovvero un vettore $w\in V$ perpendicolare a tutti gli altri vettori di $V$.

Infatti il concetto di prodotto scalare, deve essere ricondotto da un punto di vista geometrico al concetto di proiezione ortogonale. In particolare quando si calcola $\langle v,w\rangle$ non si sta altro che cercando la lunghezza della proiezione di $v$ lungo $w$ (o viceversa) rispetto ad una particoalre proiezione.

Questo è un classico esempio dove lo spazio vettoriale usato è $\mathbb{R}^2$ e la proiezione standard, quella basata sul prodotto scalare euclideo.

Un prodotto scalare è in grado di definire una norma, ovvero una nozione di lunghezza, sullo spazio $V$. Per farlo si può semplicemente procedere così: $||v|| = \langle v,v \rangle ^{\frac{1}{2}}$ per ogni $v\in V$. L’idea dietro a questa definizione e di definire la norma come la lunghezza della proiezione di un vettore su se stesso.

Prima di proseguire, vediamo un’importante proprietà che segue da quelle che caratterizzano il prodotto scalare: la disuguaglianza triangolare.

Questa si può esprimere così: $||u+v||\leq ||u|| + ||v||$ per ogni $u,v\in V$. In termini pratici, hai già visto di sicuro questa disuguaglianza quando hai studiato i triangoli. Ricordi infatti che la somma delle lunghezze di due lati è sempre maggiore del terzo singolarmente? Ecco, se ogni lato lo vedi come un vettore tutto torna 😉

Se vuoi approfondire il concetto di prodotto scalare ti consiglio questa pagina: Prodotto scalare.

Proiezione ortogonale

Ci siamo, vediamo l’ultimo concetto per poi passare a parlare sul serio di spazi di Hilbert! 🙂 Se ti è capitato di studiare un minimo la geometria nello spazio euclideo $\mathbb{R}^n$, anche solo in $\mathbb{R}^2$ è sufficiente, certo saprai che in questo spazio è ben definito un prodotto scalare.

In particolare lo possiamo definire come segue presi due vettori $\vec{x},\vec{y}\in\mathbb{R}^n$, dove $\vec{x}=(x_1,x_2,…,x_n)$ mentre $\vec{y}=(y_1,y_2,…,y_n)$:

$\langle (x_1,x_2,…,x_n), (y_1,y_2,…,y_n)\rangle := x_1\cdot y_1 + x_2\cdot y_2 + … +x_n\cdot y_n = \sum_{i=1}^n x_i\cdot y_i.$

Grazie all’esistenza di un prodotto scalare possiamo anche parlare di proiezione ortogonale , che in termini intuitivi si equivale al concetto di ombra. Infatti ti sarai certamente accorto che, nella realtà, quando un oggetto come una matita è posto in posizione inclinata sopra una superficie, con una luce che lo illumina dall’alto, sul tavolo potrai vedere un’ombra. Bene, da un punto di vista matematico quest’ombra si chiama la proiezione ortogonale del vettore matita sul piano del tavolo 😉 .

In alternativa potresti anche proiettare un vettore su un altro vettore, rappresentando il concetto intuitivamente nello stesso modo.

Nell’immagine qui sopra non ho una luce perfettamente sopra la penna, ma il concetto penso sia chiaro. Infatti nonostante la luce venga un po’ in diagonale, abbiamo un ombra sul tavolo. Questa non sarà una proiezione ortogonale ma qualcosa di leggermente diverso, ma non curiamocene visto che non è questo il tema dell’articolo. La foto qui sopra vuole solo essere da immagine per capire ciò di cui stiamo parlando 😉

Per concludere, come si calcola la proiezione ortogonale (che d’ora in poi chiamerò solo con proiezione) di un vettore $v=(v_1,…,v_n)\in\mathbb{R}^n$ su un vettore $w=(w_1,…,w_n)\in\mathbb{R}^n$?

Beh, è molto semplice! Per trovare la lunghezza del vettore di proiezione basta fare il prodotto scalare tra i due vettori, poi basta trovare la direzione lungo la quale si trova $w$ e quindi moltiplicare la lunghezza della proiezione per questo vettore unitario di direzione 😉 Ma vediamo un po’ di conti che sono sicuro che ti chiariranno il concetto. Qui sotto denoteremo con $P_w(v)$ il vettore proiezione ortogonale di $v$ lungo il vettore $w$.

$P_w(v) = \langle v,w\rangle \frac{w}{||w||} = \frac{1}{\sqrt{w_1^2+…+w_n^2}}(w_1,…,w_n) \sum_{i=1}^n v_i\cdot w_i $.

Dove all’inizio vedi il vettore $w’= \frac{w}{||w||} $, intendo il vettore unitario di direzione lungo la quale vive il vettore $w$, infatti ho usato il vettore $w$ è l’ho diviso per la sua norma, così che $||w’||=1$. Chiaramente, visto che stiamo parlando di $\mathbb{R}^n$ mi è venuto naturale spiegarti questi concetti usando norma euclidea e il classico prodotto scalare euclideo, ma si può fare lo stesso discorso con un qualunque prodotto scalare e la relativa norma indotta. Infatti la prima uguaglianza qui sopra vale ancora, poi quando ho esplicitato i conti invece va sostituita la corretta norma e prodotto scalare.

Ci siamo! Ora siamo pronti per addentrarci negli spazi di Hilbert, che sostanzialmente ambiscono a definire questi strumenti su spazi più generali, a dimensione infinita in particolare. Ma non spaventarti, pian piano ti sarà tutto più chiaro.

Ti faccio una doverosa premessa…la parte storica qui sotto nomina parecchi concetti avanzati che provo a spiegarti ma se non li hai mai sentiti immagino sarà di difficile lettura. Per cui se ti interessa sapere cosa si nasconde nella storia dietro il concetto di Spazio di Hilbert ti consiglio di fare un tentativo, magari non capirai tutto ma in linea generale lo sviluppo e le motivazioni dietro questo oggetto matematico ti saranno chiari 🙂

Altrimenti, se al momento non hai voglia di cose difficili o se non ti interessa la parte storica e preferisci aspettare che esca la seconda puntata sulle proprietà e sugli esempi, ci possiamo salutare qui e amici come prima .

Un po’ di storia sugli spazi di Hilbert

Prima dello sviluppo del concetto di spazio di Hilbert, furono ottenute altre generalizzazioni degli spazi Euclidei $\mathbb{R}^n$, che erano note ed utilizzate sia da fisici che matematici. In particolare, l’idea di uno spazio lineare astratto maturò e ricevette sempre più interesse verso la fine del 19° secolo.

Questo spazio a cui si arrivò, era uno spazio i cui elementi potessero essere sommati tra loro e moltiplicati per uno scalare (un numero reale o complesso per esempio) senza però doverli necessariamente associare con il classico vettore geometrico di $\mathbb{R}^n$. Un esempio classico sono gli spazi di matrici, che godono tranquillamente di queste proprietà ma non sono intuitivamente associabili all’immagine di un vettore (in realtà si può fare questa associazione, ma non è necessaria per poter lavorare con le matrici).

Anche altri oggetti studiati dai matematici a cavallo del 20° secolo, in particolare gli spazi di sequenze e gli spazi di funzioni, possono essere naturalmente intesi come spazi lineari (ti ricordo che per spazi lineari, di per sè, intendiamo gli spazi vettoriali di cui abbiamo parlato prima 😉 ).

Le funzioni, per esempio, possono essere sommate tra loro e moltiplicate per una costante, e queste operazioni obbediscono alle classiche proprietà delle operazioni di somma e prodotto per uno scalare che rispettano i vettori nello spazio Euclideo.

Nel primo decennio del 20° secolo, sviluppi paralleli portarono all’introduzione degli spazi di Hilbert. Il primo di questi sviluppi fu l’osservazione, emersa quando David Hilbert e Erhard Schimidt stavano studiando le equazioni integrali (se non ne hai mai vista una ecco qui qualcosa che può esserti utile: equazioni integrali), che due funzioni quadrato sommabili a valori reali, $f$ e $g$, su un intervallo $[a,b]$ (ovvero $f,g:[a,b]\rightarrow\mathbb{R}$), ammettono un prodotto scalare:

$\langle f,g\rangle = \int_a^b f(x)g(x)dx$

che ha tutte le classiche proprietà a cui siamo abituati per il prodotto scalare dei vettori nello spazio $\mathbb{R}^n$ e di cui abbiamo parlato in generale nel paragrafo sopra.

Ah…per non spaventare nessuno, quando scrivo che una funzione è “quadrato sommabile”, intendo che l’integrale del quadrato della funzione è finito:

$\int_a^b f^2(x)dx < +\infty$.

Un esempio di funzione che non è quadrato sommabile è la funzione $f(x)=\frac{1}{\sqrt{x}}$ nell’intervallo $[0,1]$, infatti si ha:

$\int_0^1 \Big(\frac{1}{\sqrt{x}}\Big)^2dx = \int_0^1 \frac{1}{x} dx = \log{1}-\lim_{x\to 0^+} \log{x} = +\infty$.

Giusto per completezza, ti dico che lo spazio delle funzioni che hanno questa proprietà si denota solitamente con $\mathcal{L}^2([a,b])$ ed è uno spazio di Hilbert se equipaggiato del prodotto scalare definito qualche riga più in su.

Schmidt sfruttò le somiglianze tra questo prodotto interno (scalare) con il classico prodotto di $\mathbb{R}^n$ per dimostrare una versione ampliata del teorema spettrale dell’algebra lineare (se non lo conosci qui trovi una bella spiegazione: Teorema spettrale) per ottenere una decomposizione di un operatore della forma:

$f(x)\rightarrow \int_a^b K(x,y)f(y)dy$

con $K$ che è una funzione continua e simmetrica di $x$ ed $y$. Questo operatore è chiamato operatore di Hilbert-Schmidt (questa non tutti la capiranno, ma va bene così: symmetric self-adjoint, smooth compact!)

Il secondo sviluppo che portò alla costruzione della nozione di spazio di Hilbert fu l’integrale di Lebesgue. Questo è un’alternativa all’integrale di Riemann che solitamente si studia ad analisi 1 e che è poi quello che si vede anche in quinta superiore 😉

Questo “nuovo integrale” fu introdotto da Henri Lebesgue nel 1904 e permise di integrare più funzioni, una classe più ampia di funzioni. Questo integrale permise, nel 1907, a Frigyes Riesz e Ernst Sigismund Fischer di dimostrare, indipendentemente, che lo spazio $\mathcal{L}^2$ di cui ti ho parlato prima è uno spazio metrico completo.

La completezza è una proprietà fondamentale di $\mathbb{R}^n$ e questo non fa che aumentare le somiglianze tra gli spazi euclidei e questa nuova tipologia di spazi che questi grandi matematici stavano introducendo. Se non conosci il termine spazio completo ti consiglio di dare una letta qui, è spiegato in modo chiaro: Spazio metrico completo.

Come conseguenza naturale del forte legame tra la geometria dello spazio Euclideo e il risultato di completezza, i risultati del 19° secolo raggiunti da Joseph Fourier (se vuoi qui trovi un articolo che avevo scritto sulla Trasformata di Fourier che è strettamente legata con ciò di cui stiamo parlando), Friedrich Bessel e Marc-Antoine Parseval sulle serie di Fourier, o comunque sulle serie trigonometriche, si generalizzarono a questi spazi più ricchi e “potenti”. Andarono così a costituire la struttura geometrica e analitica del teorema di Riesz-Fischer.

Chiudo questa serie di teoremi importanti con il riferimento a un altro che è obbligatorio citare, il teorema di Rappresentazione di Riesz. Questo, in linea pratica, dice che ogni funzione lineare

$L(\alpha v + w) = \alpha L(v) + L(w)$, $\forall \alpha\in\mathbb{R}$ o $\mathbb{C}$ e $\forall v,w\in H$

e continua definita da uno spazio di Hilbert a $\mathbb{C}$ oppure $\mathbb{R}$ (a seconda del campo su cui $H$ è spazio vettoriale), che in gergo è chiamato funzionale lineare a continuo $L:H\rightarrow \mathbb{R}\,(L\in H’)$, può essere associata ad uno ed un solo elemento $v_L$ dello spazio di Hilbert, in modo che applicare la funzione $L$ ad un vettore $w\in H$ equivale a moltiplicare questo vettore $w$ per il rappresentante $v_L$:

$L(w) = \langle v_L,w \rangle$ per ogni $w\in H$.

Se ci pensi, è un po’ come la matrice associata univocamente ad ogni funzione lineare che si vede in algebra lineare (se non conosci questo risultato, qui trovi una spiegazione molto chiara : Matrice associata a un’applicazione lineare) , solo che qui va richiesta la continuità perché, su spazi a dimensione infinita, si possono costruire funzioni lineari ma non continue 😉 .

Bene, prima di passare alle motivazioni fisiche dello sviluppo della teoria sugli spazi di Hilbert, ci tengo a dirti che quest’ultimo teorema fu dimostrato in via indipendente da Maurice Fréchet e Frigyes Riesz nel 1907.

Ah..un’ultima cosa! Ma chi ha introdotto il termine SPAZIO DI HILBERT? Il colpevole è John von Neumann, che coniò il termine spazio di Hilbert astratto nel suo lavoro sugli operatori Hermitiani illimitati. Von Neumann fu di per sé il primo a fornire una trattazione completa e assiomatica di questi spazi, prima di lui i matematici li utilizzavano ma più per interesse fisico.

Ma quindi servono a qualcosa questi spazi? Sono usati per la fisica? Proprio così, la motivazione principale che portò alla formalizzazione di questi spazi fu il fornire una struttura matematica alla meccanica quantistica. Infatti gli stati in un sistema quantistico sono vettori in un certo spazio di Hilbert.

Ma non mi dilungo oltre su questo tema, dato che Gianluca sta trattando proprio questi aspetti nei suoi articoli! Il primo lo trovi qui: https://www.mathone.it/meccanica-quantistica-1/

P.S. Questa parte storica l’ho tradotta e rielaborata a partire dalla pagina inglese di Wikipedia, che se vuoi più dettagli puoi trovare qui: Wikipedia – Hilbert Spaces

Conclusione

Perfetto, con questa parte storica direi che può dirsi conclusa una prima panoramica su questi strani oggetti, gli spazi di Hilbert. Se hai notato nel corso dell’articolo ho disseminato link per tuoi eventuali approfondimenti, perché come mi piace dire spesso, qui sul blog non abbiamo l’obiettivo di insegnare nulla ma solamente di incuriosire e dare gli strumenti per approfondire 😉

Detto ciò, se può interessarti qui sotto trovi un video davvero molto chiaro sugli spazi vettoriali astratti (è inglese) e il link a un libro di testo in cui si parla anche di questo argomento (più in generale di analisi funzionale) che magari può interessarti. Inoltre ti ricordo che questa è solo la prima puntata di due e tre che farò sugli spazi di Hilbert, quindi ti aspetto per le prossime 😉 !

Il libro che ti voglio suggerirti è un classico dell’analisi funzionale e lo trovi qui: Functional Analysis, Sobolev Spaces and Partial Differential Equations .

Il video invece è questo:

Un viaggio attraverso lo specchio

Lo specchio magico di Lewis Carroll

É intrinseco nell’immaginario umano interpretare lo specchio come confine sottilissimo tra due dimensioni: quella reale e la sua speculare. Il matematico e scrittore Lewis Carroll, pseudonimo di Charles Lutwidge Dodgson, nella sua opera “Alice attraverso lo specchio” invece , offre una differente interpretazione: contrappone il reale al nonsense.

Alice attraversa lo specchio e si trova a sostenere stravaganti dialoghi con animali parlanti e, le numerose disavventure che vive, come la sua deformazione fisica, non sono altro che un cifrato linguaggio matematico. Il folle mondo che la bambina esplora, è rigidamente governato dal libero arbitrio e manca della dimensione temporale tanto che l’orologio segna sempre e solo ”l’ora del tè”! Ogni vicenda nasconde indovinelli e tranelli logico-matematici e riferimenti alla fisica quantistica che solo la mente di un matematico avrebbe potuto ideare.

Nel mondo sottosopra vi sono differenze biologicamente evidenti: ogni molecola esiste in due forme speculari (ad esempio, il destrosio e il levulosio per lo zucchero).
Infatti, prima di attraversare la superficie riflettente, Alice dubita

“forse il latte speculare non sarebbe buono da bere”

Lewis Carrol, “Alice attraverso lo specchio”

ed effettivamente è cosi, anzi, non sarebbe neanche assimilabile!

Dunque, un’apparente lettura per l’infanzia, è in realtà un complesso viaggio attraverso uno specchio magico, per meglio dire, è il racconto di un sogno, che in quanto tale, necessita di considerazioni psicoanalitiche, di cui Freud, filosofo, psichiatra e psicoanalista ne è l’iniziatore.

I neuroni specchio         

Lo specchio continua ad essere soggetto di numerosi studi scientifici nel campo delle neuroscienze.
Nella seconda metà del ‘900 un gruppo di ricercatori dell’Università di Parma, coordinato dal neuroscienziato Giacomo Rizzolatti scoprì i neuroni specchio. Sono cellule nervose che si trovano nel cervello e si attivano quando si osserva una persona fare un’azione o provare emozioni e sentimenti. Tramite l’imitazione, si riesce ad interpretare l’azione dell’altro come fosse la propria e non solo in campo motorio ma anche emotivo. I neuroni specchio perciò permettono la costruzione di profondi legami tra esseri umani, queste particolari cellule sono in grado di cogliere ed interpretare i sentimenti altrui e arricchiscono le esperienze emozionali e cementano i rapporti umani. Alla base di ogni rapporto interpersonale c’è un un meccanismo specchio che offre la possibilità di sviluppare una raffinata sensibilità.

“Dopo l’era dell’homo homini lupus, la scienza ci dice che siamo biologicamente costruiti per stare insieme agli altri.”

“In te mi specchio, per una scienza dell’empatia”, Giacomo Rizzolatti, Antonio Gnoli

Se ti interessa approfondire questo tema, puoi trovare il libro da cui sono state citate queste parole qui, oppure in un altro libro sempre di Rizzolatti:

  1. In te mi specchio, per una scienza dell’empatia
  2. So quel che fai. Il cervello che agisce e i neuroni specchio

Dagli specchi d’Archimede alle centrali solari

Tra il II e III secolo a.C.  Diocle , matematico greco e autore di numerosi trattati di geometria ottica,  nell’opera “Gli specchi ustori”, mette in rilievo la curiosità e l’interesse degli scienziati dell’epoca per lo specchio. Dice:

«Pitia, il geometra scrisse una lettera a Conone per chiedergli come trovare una superficie tale che, posta di fronte al sole, ne rifletta i raggi su una circonferenza. Inoltre quando Zenodoro, l’astronomo, venne da noi, ci chiese come realizzare una simile superficie specchiante tale da concentrare i raggi solari in un solo punto e così produrre fuoco»

“Gli specchi ustori”, Diocle

Narra la legenda che, durante la seconda guerra punica, l’enorme proprietà di produrre fuoco delle “superfici specchianti “ di cui parla Diocle, fu sfruttata da Archimede per difendere Siracusa dagli attacchi, via mare, dei Romani. Si tratta di una “macchina” costituita da superfici specchianti opportunamente orientate tali che i raggi del sole convergessero in un unico punto, bruciando cosi il legno delle navi romane.

Il volto di Archimede è inciso nel recto della medaglia Fields, di cui si parla qui: Medaglia Fields.

Questa vicenda fu tramandata fino ad Alhazen, matematico, fisico, astronomo e medico arabo che cercò di descrivere il cammino di un raggio luminoso che esce da una sorgente e raggiunge un punto obiettivo dopo aver subito una riflessione su una superficie sferica.

Teorema di Alhazen

Fissati una circonferenza $\,\Gamma$, una sorgente $S$ ed un punto obiettivo $B$ (interni alla circonferenza), esistono 2 o 4 raggi uscenti da S che dopo una riflessione sulla curva speculare $\,\Gamma$, raggiungono l’obiettivo B.

Teorema di Alhazen

La dimostrazione di Alhazen rimase però incompiuta. L’importanza di tale questione è evidente poiché, secoli dopo, Leonardo da Vinci affrontò il problema e dopo numerosi fallimenti procedette per via sperimentale. Costruì uno strumento in scala, piuttosto piccolo, che meccanicamente dava soluzione al problema. Nel 1666 Isaac Barrow fornisce un’impostazione geometrica della questione, sfruttando il principio di Erone, per cui la luce si propaga secondo geodetiche di tipo spaziale, cioè percorrendo la minima distanza. Il problema di Alhazen, dunque, si riduce ad un problema di ottimizzazione vincolata, ove il vincolo è rappresentato dalla circonferenza.
Applicando il Teorema dei moltiplicatori di Lagrange si ottiene la cubica che, intersecata con il vincolo, fornisce i punti di Alhazen cioè gli X tali che la distanza d è minima.

$d(x,y) = \overline{SX}+\overline{XB} = \sqrt{(X-X_S)^2+(Y-Y_S)^2}+ \sqrt{(X-X_B)^2+(Y-Y_B)^2} $

$\min_{(x,y)\in\Gamma} d(x,y)$

Tre anni dopo Christiaan Huygens dimostra che i punti di Alhatzen si ottengono con esattezza dall’intersezione tra la circonferenza  e l’iperbole rettangolare trovata sostituendo l’equazione della circonferenza nella cubica sopra sviluppata. Qui il link https://www.desmos.com/calculator/4hjjiyop5f in cui in verde è rappresentata l’equazione cubica di Isaac Barrow, mentre in rosso il luogo geometrico indicato da Huygens.

Tali metodi, permettono esclusivamente la conta dei punti di Alhazen, non la loro individuazione nel piano, tanto che nel 1965 è stato dimostrato che il problema non è risolubile per via geometrica.

É il matematico tedesco Kästner a fornire una dimostrazione analitica che concerne di determinare tali punti, adottando un sistema d riferimento in coordinate polari e sfruttando la legge di riflessione. Di seguito, trovi un video che aveva fatto Davide su ciò che riguarda le proprietà degli specchi e le leggi che regolano il fenomeno della riflessione:

Ghiaccio al sole!

Durante la seconda rivoluzione industriale, le proprietà degli specchi continuano ad interessare scienziati e matematici, i quali muovono i primi passi verso la costruzione di macchine solari. In particolare Mouchot ed il suo allievo Pifre, nel 1878,  in occasione dell’esposizione mondiale a Parigi , espongono la loro macchina solare costituita da uno specchio il cui diametro misurava circa  4 metri ed una caldaia ad esso collegato. Grazie alla luce del sole intrappolata dalla superficie riflettente, si riuscì ad azionare un generatore di vapore collegato ad una macchina che produceva ghiaccio!!! Più tardi Abel Pifre costruì un generatore solare di vapore così efficiente che riuscì, con lo stesso metodo, ad azionare una macchina tipografica con la quale vennero stampate 500 copie del “Giornale del Sole”.

La tecnologia del solare termodinamico

Le passate applicazioni sullo specchio, inteso come concentratore di raggi solari, hanno ispirato il Premio Nobel per la fisica Carlo Rubbia, il quale nel 2001 ha dato vita al “Progetto Archimede”, sviluppando la tecnologia del solare termodinamico.
Anzitutto questa nuova tecnologia porta con se un evidente vantaggio economico: un metro quadro di specchi costa meno rispetto ad un metro quadro di pannelli fotovoltaici. Inoltre, l’efficienza di tale tecnologia sta nel fatto che anche il nostro ecosistema può risentirne i benefici: si riesce a produrre la stessa quantità di energia che si produrrebbe nello stesso tempo in una centrale nucleare o a combustibili fossili. In Sicilia è stata inaugurata la “Centrale Archimede” che si basa, sull’applicazione delle proprietà degli specchi parabolici che fanno si che i raggi del sole vengano proiettati sui tubi in cui scorrono miscele di sali che posso superare anche 550°.

Oggi giorno, il legame tra lo specchio e la luce permettono il funzionamento di torce elettriche, fanali delle auto e addirittura cucine a zero impatto ambientale sono i forni solari. Nei paesi del terzo mondo questo macchinario è utilizzato come un normale forno e effettivamente lo è, sia per tempistiche sia che per modalità di cottura con l’incombenza che gli specchi devono essere orientati verso il sole ogni 15-20 minuti. Un’ultima curiosità: come la tradizione vuole, è uno specchio parabolico ad accendere la fiaccola in occasione di ogni edizione dei Giochi Olimpici.

Finanza: La matematica del denaro (puntata 1)

Qual è il significato di finanza? Quanto è importante una buona educazione finanziaria? Cosa sono gli strumenti finanziari? In questo primo articolo della nuova rubrica a tema di Mathone, tratterò di un argomento che sembra spaventare molti, ma che in realtà può essere compreso da tutti, data la sua costante importanza nella vita quotidiana: questa “indecifrabile” finanza.

Ebbene, essa è semplicemente una scienza che si focalizza sullo scambio di risorse economiche (quali denaro e le sue forme meno liquide, come debiti e crediti) tra individui (finanza personale) , imprese (finanza aziendale) e governi (finanza pubblica o internazionale).  Facile, no? Ma perché è importante?

Premessa: Questo primo articolo ed i prossimi della rubrica sono solamente a scopo informativo, col fine di suscitare ed approfondire l’interesse per questo argomento. Nè io nè gli altri collaboratori siamo investitori/traders professionisti e nessuna cosa che scriviamo ha come obiettivo spingerti ad investire i tuoi soldi. Detto questo, enjoy your reading!

Educazione Finanziaria: cos’è e quanto è importante

Mi piace definire l’educazione finanziaria come consapevolezza economica, intesa come strumento di libertà e scelta. Quante scelte sono autenticamente solo nostre?

Susanna Minghetti, Dirigente Politiche giovanili e programmazione europea.

In quanto tema che condiziona la qualità della vita di ogni persona, ci tengo a sottolineare quanto una buona formazione in ambito finanziariò può concedere benefici e coscienza in scelte che, in dati momenti della nostra vita, influenzeranno radicalmente la propria prosperità futura.

Secondo l’OCSE (Organizzazione per la Cooperazione e lo Sviluppo Economico) l’educazione finanziaria è: “[…] quel processo mediante il quale i consumatori/investitori migliorano le proprie cognizioni riguardo a prodotti, concetti e rischi in campo finanziario e, grazie a informazioni, istruzione e/o consigli imparziali, sviluppano le abilità e la fiducia nei propri mezzi necessarie ad acquisire maggiore consapevolezza delle opportunità e dei rischi finanziari, a fare scelte informate, a sapere dove rivolgersi per assistenza e a prendere altre iniziative efficaci per migliorare il loro benessere finanziario”.

Grazie ad essa, puoi prendere coscienza di te stesso e delle tue aspettative ed attitudini, per affrontare con efficacia e successo molte delle circostanze ed esigenze della vita, con il doppio vantaggio di raggiungere il pieno sviluppo personale ed essere, quindi, nelle condizioni di contribuire concretamente al benessere ed al progresso della tua famiglia, del tuo gruppo di amici e/o colleghi e, in definitiva, della tua comunità. Insomma, ti aiuta ad utilizzare al meglio ciò che riposa nel tuo portafogli e magari anche a fare qualcosa di soldi in più, se vogliamo dirla tutta (però questo dipende esclusivamente da te!).

Ma.. la matematica dov’è?

Che questa piccola introduzione all’argomento ti sia stata d’ispirazione o meno, puoi stare comunque tranquillo: adesso parliamo di numeri. Trattandosi di denaro, potevano mai mancare?

Parliamo proprio di matematica finanziaria, di cui argomenti principali possono essere sinteticamente classificati con due parole chiave: valore e rischio. L’obiettivo è costruire modelli (di cui tratterò nei prossimi articoli) che consentano la misurazione del valore e del rischio di contratti e di aggregati di contratti (chiamati portafogli) finanziari, mirati a distinguere alternative in base alle attitudini ed alle preferenze delle persone, e più in generale che siano utilizzabili per il controllo della sostenibilità economica, fornendo un quadro generale di problemi e soluzioni utili per mantenere un equilibrio nell’economia.

Un esempio di indice del valore è la formula del prezzo di un titolo obbligazionario a cedola nulla (non spaventarti, più avanti spiegherò cosa è):

$ P=\frac{Valore\ Rimborso}{{(1+i)}^t} $

Dove $ P $ è la somma di denaro (€ ad esempio) che viene versata oggi, ad un tasso di interesse $ i $ , per ottenere un dato rimborso tra $ t $ anni.

Infatti se ipotizziamo che il tempo dell’investimento sia $ t=3 $ anni, che il tasso di interesse in questo periodo sia $ i = 12,62\%\ $ e che il rimborso a fine investimento sia $ 100€ $ , il prezzo da pagare per questo titolo all’anno 0 sarà

$ P=\frac{100}{{(1+0,1262)}^3}=70\textrm{€} $

Quindi se oggi acquisto un titolo a $ 70€ $ ad un tasso di interesse del $ 12,62\% $ , tra tre anni riceverò $ 100€ $ .

Uno dei principali strumenti di analisi è il calcolo delle probabilità: con esso si interpretano le situazioni, si costruisce la base dei modelli di valutazione, si definiscono i criteri e le regole di scelta, e fornisce formule per il calcolo dei valori e della rischiosità. Funge da metodo generale per affrontare con criterio situazioni e decisioni in condizioni di incertezza: infatti non solo il calcolo di probabilità ma la statistica in generale fornisce strumenti utili a creare informazione per poter dare miglior base alle scelte (non solo finanziarie, ovviamente).  Visto che siamo in tema, colgo l’occasione per consigliarvi la lettura di questi articoli molto interessanti sulla statistica: Nascita della probabilità , Le variabili aleatorie Il caso esiste? .

A tal proposito è giusto sottolineare uno degli errori più comuni, ovvero la sterilizzazione dell’incertezza (in modelli semplificati per rendere più semplice la comprensione) e, quindi, la rinuncia al calcolo delle probabilità ricorrendo soltanto alla logica, e ciò può condurre a gravi errori nel momento in cui ogni caso non sia analizzato con la giusta considerazione della probabilità attribuita al suo verificarsi. Questo articolo fa ben intuire quanto i processi stocastici siano fondamentali per un giocatore d’azzardo (che possiamo quasi paragonare ad un investitore).

Vi lascio un simpatico spezzone dal film 21 Blackjack dove parla proprio dell’importanza del cambio di probabilità (il famoso paradosso Monty Hall ) :

I principali strumenti finanziari

Cercherò ora di rendere chiara l’idea di cosa e quali siano i principali strumenti finanziari , che probabilmente avrai già sentito nominare quando si parla di borse e di mercati in tv e sui social. Nel corso della rubrica avrò il piacere di analizzarli nello specifico, nelle loro varie sfaccettature e come la matematica funga ancora da strumento principale per governarli.

In modo molto semplice, uno strumento finanziario è un qualsiasi contratto finalizzato al trasferimento di denaro nello spazio. Si distinguono tra di loro per modi, tempi e spazi diversi, di seguito descrivo i più famosi:

I titoli di debito, o titoli obbligazionari, sono strumenti emessi da soggetti in deficit finanziario (detti debitori) che hanno bisogno di finanziamenti (prestiti) sotto forma di denaro. A loro volta questi titoli vengono sottoscritti (comprati) da soggetti in surplus finanziario (detti creditori) che, impiegando il loro denaro, finanziano le esigenze dei debitori aspettandosi in cambio una remunerazione (chiamata, in questo caso, interesse). Questi contratti possono essere emessi dallo stato, e saranno detti titoli di stato, oppure possono essere emessi da imprese, e si chiameranno obbligazioni societarie.

I titoli di debito si distinguono per diverse caratteristiche (durata della vita, struttura ecc.). A seguire due esempi di titoli, uno senza cedola e l’altro con cedola ( qui viene spiegato in breve cosa sono e come funzionano le cedole).

Le due linee temporali qui sopra rappresentano entrambe un periodo di tempo $ t(0;1) $ . La prima a sinistra descrive la vita di un titolo obbligazionario senza cedola, che comprende soltanto il pagamento del prezzo iniziale (col segno – essendo un’uscita di denaro) e la remunerazione finale (col segno + essendo un’entrata di denaro). La seconda invece descrive la vita di un titolo con cedola, che oltre al pagamento iniziale e alla remunerazione finale comprende anche una remunerazione periodica di cedole, che rappresentano l’interesse che il possessore del titolo riceverà nelle così dette date di godimento (frazioni del periodo $ t(0,1) $ ).

Le azioni, o titoli azionari, rappresentano un modo per “acquistare” una piccola parte di una società, partecipando quindi al capitale della stessa, acquisendone anche i rischi. Ogni azione rappresenta un’uguale frazione del capitale, perciò tutte le azioni hanno valore uguale.

Esempio: La società Mathone presenta un capitale sociale di $2\ 000\ 000$ di euro (è sempre un esempio eh!). Decide di immettere nel mercato un numero di azioni pari ad $1\ 000\ 000$, di cui valore è di $2 €$ per azione.

Chi possedesse $10\ 000$ azioni deterrebbe

$ 10\ 000 \times \ 2€ = 20\ 000€ $ di capitale, ovvero

$ (\frac{20\ 000}{2\ 000\ 000})\ \times \ 100\ =\ 1\%\ $ del capitale sociale di Mathone.

Le azioni sono considerate più rischiose delle obbligazioni, per una serie di motivi. Le prime dipendono dal benessere di una società, mentre le seconde hanno pieno diritto di rimborso , anche nel caso in cui la società vada male. Inoltre, se la società fallisce, gli obbligazionisti saranno rimborsati con quanto rimane del capitale, gli azionisti no. Ma d’altra parte, dove c’è più rischio c’è anche più rendimento, il che solitamente garantisce alle azioni un guadagno nettamente maggiore.

Infine, i derivati sono particolari contratti a termine, il cui valore dipende (deriva) dall’andamento del prezzo di una o più attività sottostanti.

Il sottostante quindi è una variabile oggetto degli strumenti derivati e può avere natura reale (merci, materie prime) o finanziaria (azioni, titoli, indici finanziari ecc.). Inoltre, Il venditore del contratto non deve necessariamente possedere il sottostante. Figo no? Ciò permette copertura di rischi praticamente ovunque, rendendo i derivati contratti da avere obbligatoriamente nel proprio portafoglio finanziario.

Esistono varie categorie di derivati, descriverò in breve solo le principali : futures, swap, opzioni.

  • Nei forward le due controparti si accordano per scambiarsi una certa quantità di un sottostante ad una data futura, ma ad un prezzo stabilito prima. Chi acquista è detto in “posizione lunga” (long position) mentre chi vende è in “posizione corta” (short position).
  • Gli swap sono contratti dove le due controparti decidono di scambiarsi somme di denaro (o meglio la differenza tra queste ultime) in base a delle variabili (tasso di interesse, valute diverse) specificate nel contratto stesso.
  • Le opzioni conferiscono al possessore il diritto, ma non l’obbligo (perciò “opzione”), di acquistare o vendere il sottostante ad una data e ad un prezzo stabiliti. La differenza fondamentale delle opzioni rispetto agli altri derivati consiste nei diritti del possessore: egli non è obbligato ad acquistare o vendere il sottostante, ma può farlo se esercitando l’opzione ne trae un’effettiva convenienza.

Per questo primo articolo è tutto, se hai domande o vorresti proporre qualche argomento che ti suscita curiosità, c’è la sezione commenti apposta. Nei prossimi articoli entrerò più nello specifico , analizzando vari aspetti e curiosità del mondo della finanza, perciò stay tuned!

Il triangolo di Tartaglia: smemorati per scelta

Sicuramente alle scuole superiori avrai studiato qualcosa riguardo l’algebra dei binomi, tipico è il quadrato di un binomio: $(a+b)^2=a^2+b^2$. Ovviamente no! Manca un termine molto importante: $2ab$.

Presa da Reddit


In questo articolo cercheremo di capire il motivo per cui questo termine è lì. Inoltre generalizzeremo il risultato per la potenza ennesima di un binomio. Per questa generalizzazione ci verrà in aiuto il Triangolo di Tartaglia 😉


Il caso $(a+b)^2$ è molto semplice, infatti per la proprietà distributiva del prodotto:
$ (a+b)(a+b)=a^2+ab+ab+b^2=a^2+2ab+b^2 $

Analogamente,
$ (a+b)^3=(a+b)^2(a+b)=(a^2+2ab+b^2)(a+b)=a^3+3a^2b+3ab^2+b^3$
Tuttavia man mano che l’esponente aumenta diventa davvero laborioso svolgere tutti i conti, per questo sarebbe molto comodo trovare un metodo più veloce.

Notiamo che ogni addendo del risultato è costituito da due parti: una è il coefficiente, indipendente da $a$ e $b$, l’altra la chiameremo “combinazione”, in quanto è una combinazione di $a$ e $b$, elevati ad un appropriato esponente.

E’ abbastanza facile ricordare come si costruiscono le combinazioni: in un binomio $(a+b)^n$ si parte da $a^nb^0$ e poi si prosegue diminuendo di 1 l’esponente di $a$ e aumentando di 1 quello di $b$, fino ad arrivare alla combinazione simmetrica: $a^0b^n$. Il problema principale è quindi quello di ricordare i coefficienti da mettere davanti ai vari addendi.
Fortunatamente ci viene in soccorso un matematico italiano: Niccolò Fontana. Questo nome ti suona nuovo? Probabilmente lo conosci con il suo soprannome: Tartaglia!


Il soprannome deriva dalla sua balbuzie, sviluppata in seguito ad uno spiacevole incontro con dei briganti avuto a soli 13 anni e che gli causò un trauma cranico. Nonostante gli sia stato attribuito come presa in giro, egli stesso decise di farne un simbolo, utilizzandolo come firma per le sue opere. Oggi ci occupiamo della più celebre: il Triangolo di Tartaglia (conosciuto come Triangolo di Pascal all’estero).

Devi sapere che nel mondo della matematica l’Italia ha svolto e sta svolgendo un ruolo molto importante, non solo con Tartaglia ma anche con altri matematici. Per esempio abbiamo ricevuto 2 Medaglie Fields per meriti matematici, se ti interessa sapere cosa sono leggi questo articolo: Medaglia Fields.

Costruzione del Triangolo di Tartaglia

La costruzione è molto semplice: per prima cosa si numerano le righe a partire da 0 (il motivo sarà chiaro in seguito), poi si dispone una serie di 1: il primo a fare da vertice; gli altri, due per riga, lungo i lati obliqui di un triangolo isoscele (quindi ai due estremi di ogni riga). Infine per riempire la parte centrale è sufficiente ricordare che ogni termine è dato dalla somma dei due valori immediatamente sopra di esso. Per esempio alla riga 2 c’è un 2, ottenuto dalla somma di due 1, mentre i due 10 alla riga 5 derivano dalle somme di 4 e  6 alla riga superiore.

Perchè il Triangolo di Pascal è utile?

Tartaglia fa uso del suo triangolo per problemi di combinatoria, tuttavia esso è anche molto utile per svolgere la potenza di un binomio. In effetti le due cose sono strettamente collegate, ma lo vedremo in seguito.
Per il momento osserviamo solo che i numeri alle righe 2 e 3 sono rispettivamente i coefficienti dei termini di $(a+b)^2$ e $(a+b)^3$. Si può dimostrare che questo vale per ogni riga! Per esempio i coefficienti di $(a+b)^5$ sono i numeri che compaiono alla quinta riga del triangolo. Quindi,
$(a+b)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5$
Molto più veloce rispetto a svolgere manualmente tutti i conti.

Ora risulta chiaro perché abbiamo iniziato a numerare le righe da 0. Infatti $(a+b)^0=1$ mentre $(a+b)^1=1a^1+1b^1$.

Bene, abbiamo visto come il Triangolo di Tartaglia ci può aiutare nello sviluppo di un binomio. Ora soffermiamoci su un caso pratico molto semplice in cui saper svolgere il quadrato o il cubo di un binomio può essere utile.

Fate finta di dover calcolare per qualche motivo $106^2$ e di non avere la calcolatrice a portata di mano. In questo caso è comodo scrivere $106^2=(100+6)^2$ ed applicare il metodo di Tartaglia, quindi il risultato sarà
$100^2+2\cdot 6\cdot 100+6^2=11236$

Oppure, per esempio:
$(63^3)=(60+3)^3=60^3+3\cdot 60^2\cdot 3+3\cdot 60\cdot 3^2+3^3=216000+32400+1620+27=250047$ .


Abbastanza laborioso, ma ci si deve accontentare, è comunque più veloce rispetto a svolgere tutti i calcoli in colonna!

Coefficienti binomiali

Abbiamo detto che Tartaglia fa ampio uso del suo triangolo soprattutto nel campo del calcolo combinatorio; perché le due cose sono legate?
Ragioniamo sul significato dei coefficienti, aiutandoci con un esempio: $(a+b)^3$ . Ci chiediamo, senza svolgere i calcoli, quanti siano i termini con combinazione $a^2b$

La figura mostra il motivo per cui il risultato è 3. Le terne che moltiplicate danno come combinazione $a^2b$ sono infatti $(a,a,b) ; (a,b,a) ; (b,a,a)$ , rispettivamente riquadrate in rosso, blu e verde.

Andiamo in profondità, qual è il significato della domanda che ci siamo posti? Quello che abbiamo fatto è stato fissare una terna: $(a,a,b)$, e andare a contare in quanti modi questa terna può disporsi.
Per calcolare questo risultato basta osservare quante possibilità abbiamo per la prima posizione (3), per la seconda (2) e per la terza (1). Quindi in tutto si hanno $3\cdot 2\cdot 1=6$ possibilità. Però i due termini $a$ sono indistinguibili, di conseguenza dobbiamo anche dividere per il numero di possibili disposizioni delle $a$, in questo caso 2.

Riassumendo l’operazione che ci consente di contare le combinazioni possibili è la seguente:

$\frac{3\cdot 2\cdot 1}{2}=\frac{3!}{2!1!}=\binom{3}{1}$

Questa espressione è detta, guarda caso, coefficiente binomiale e in generale si calcola così

$\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Ogni termine del triangolo di Tartaglia è proprio il coefficiente binomiale di n k dove n è la riga e k la colonna  (partendo da 0), per esempio il 10 è alla riga riga 5 e alla colonna 2, infatti si ottiene calcolando

$\binom{5} {2}=\frac{5!}{2!3!}=10$

Binomio di Newton

In questo modo possiamo scrivere in forma compatta la potenza di un binomio:

$(a+b)^n=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$

Questa formula è il celebre binomio di Newton. Essa è fondamentale in combinatoria, ma ha applicazioni anche in altre branche della matematica

Per esempio in questo articolo Georg Cantor: Quanto è infinito l’infinito? Lorenzo spiega come Cantor abbia dimostrato che l’insieme delle parti di un insieme ha una cardinalità maggiore rispetto alla cardinalità dell’insieme stesso.
Nel caso di insiemi finiti (ovvero costituiti da un numero n di elementi), la cardinalità è esattamente $2^n$, vediamo come provarlo utilizzando la formula di Newton.

Noi sappiamo che $card(X)=n$. L’insieme delle parti di X è l’insieme costituito da tutti i sottoinsiemi di X. Quindi per contare i suoi elementi possiamo per prima cosa contare il numero di sottoinsiemi di X con 0 elementi, poi quelli con 1 elemento e così via, fino a quelli di n elementi. Infine, per trovare il numero totale sarà sufficiente sommare i conteggi parziali.
Ricordando il significato di coefficiente binomiale, il numero di sottoinsiemi con 0 elementi sarà $N_0 =\binom{n}{0}$, con 1 elemento $N_1=\binom{n}{1}$ e così via fino a $N_n=\binom{n}{n}$.
Quindi sommando abbiamo che $card(\mathcal{P}(X))=\sum_{k}^{n} \binom{n}{k}= \sum_{k}^{n} \binom{n}{k}1^{n-k}1^k$ ovvero lo sviluppo con il binomio di Newton di $(1+1)^n=2^n$.

Se ti interessa approfondire questo argomento o qualche altro risultato di Tartaglia ti lascio qualche link interessante qui sotto:

Toro (geometria) : tra ciambelle e topologia

Cos’è il toro, inteso come superficie? Beh, partiamo dalle cose che conosci di sicuro…ti piacciono le ciambelle? Perfetto, sei già a un ottimo punto di partenza, perché nelle prossime righe andremo a scoprire come definire matematicamente la forma di una bella ciambella, proprio come quella riportata nell’immagine qui sotto.

Non so se sei uno/a che analizza ciò che vede e prova a darci una spiegazione matematica o scientifica, però spesso quando mi trovo a contatto con oggetti anche comuni io ci provo e, effettivamente, quando ho provato a pensare come descrivere una palla nessun problema, un dado nessun problema, ma una ciambella?!

Mi sono trovato in una situazione simile quando ho provato a descrivere la forma delle nuvole, inutilmente chiaramente. Queste domande però mi hanno portato a scoprire l’esistenza dei frattali, sui quali puoi anche trovare un interessante articolo qui: Frattali in natura, alla scoperta di questi strani oggetti.

In questo articolo andremo a scoprire cos’è il toro, la superficie che più si addice per descrivere la tua amata ciambella che mangi a colazione. Vedremo come costruirlo, la sua equazione, come rappresentarlo in due dimensioni e anche un sistema dinamico semplice e interessante su esso definito (parleremo di biliardi).

Per cui le cose da studiare sono tante quindi…iniziamo!

Costruzione geometrica del toro

Per costruire il toro si può partire da un pezzettino di plastica o qualunque materiale abbastanza flessibile. Puoi ritagliarlo di forma quadrata o rettangolare, come la figura qui sotto.

Ora per fornire le istruzioni che ti permetteranno di ottenere il toro partendo da questo pezzettino di plastica, userò le lettere indicate nella figura qui sopra. Per cui devi andare a incollare tra loro i due lati $b$ a $b’$, ottenendo così un cilindro senza tappi, come rappresentato qui sotto:

Nel cilindro qui sopra, come puoi vedere, abbiamo identificato i due lati $b$ e $b’$, il che vuol dire che abbiamo definito una relazione di equivalenza tra due dei quattro lati del quadrato, ovvero $b\equiv b’$. Per concludere la nostra costruzione non ci resta che incollare tra loro anche i lati $a$ e $a’$, stando però attenti a non cambiare l’orientamento delle due circonferenze, ovvero senza attorcigliare il cilindro su se stesso.

Ah..una cosa importante! Se invece di mantenere l’orientamento facessi un cambio di orientamento, ovvero artorcigliassi una volta il cilindro, otterresti la bottiglia di Klein, altra superificie parecchio interessante di cui parleremo in un articolo in futuro.

Identifichiamo quindi $a\equiv a’$ e otteniamo il nostro toro come rappresentato qui sotto:

Interessante come costruzione, no?! Se ti interessa sapere come ho creato le immagini qui sopra (e anche quelle che seguiranno), ci tengo a dirti che ho usato GeoGebra, un software che se non conosci ti consiglio davvero di scoprire, è molto potente ed intuitivo. Io non lo so usare in maniera troppo spinta (si possono fare davvero delle figate assurde) ma mi basta per rappresentare situazioni e oggetti in modo da chiarirmi come sono fatti.

Detto ciò, come vedi nella figura del toro qui sopra, ho evidenziato due circonferenze e non l’ho fatto a caso. Infatti queste corrispondono ai punti in cui tu hai messo la colla sul pezzettino di plastica. Come puoi vedere una è associata all’identificazione (equivalenza) dei lati $a\equiv a’$ a l’altra relativa alla relazione di equivalenza $b\equiv b’$.

Questo ci porta evidentemente a motivare la costruzione, ben più formale e astratta, che di solito viene proposta quando si parla del toro:

Il toro geometrico è ottenuto come il prodotto cartesiano di due circonferenze: $\mathbb{T}=S^1\times S^1$

Qualsiasi libro di testo di geometria

Data la costruzione semplice che abbiamo appena fatto, risulta molto più evidente il perché di questa costruzione più rigorosa e matematica. Infatti il prodotto cartesiano non fa altro che associare a ogni fissato elemento del primo insieme, tutti quelli del secondo.

Pensa di muoverti lungo la circonferenza verticale (quella che abbiamo denotato con $a\equiv a’$) e a ciascun suo punto traccia il cerchio massimo che seziona orizzontalmente il toro. Vedi quindi chiaramente che unendo tutte queste circonferenze al variare dell’elemento fissato sul cerchio verticale, ottieni esattamente tutta la superficie torica 🙂

Il toro in fondo è una tazza…

Questo è un tema di cui sei di sicuro a conoscenza se hai studiato un po’ di topologia o geometria o segui la pagina Instagram @mathoneig (fallo se non la segui ancora, la trovi qui: Pagina Instagram 😉 ).

Partiamo dal definire cosa sia uno spazio topologico, per poi introdurci al concetto omeomorfismo così da poter capire quantomeno intuitivamente l’immagine qui sopra.

Definizione (Topologia) Dato un qualunque insieme $X$, si dice topologia su $X$ un suo qualunque sottoinsieme $T\subset \mathcal{P}(X)$ (dove con $\mathcal{P}(X)$ intendiamo l’insieme delle parti di $X$) che soddisfi le 3 seguenti proprietà:

  1. L’insieme vuoto $\emptyset$ e $X$ appartengono a $T$
  2. L’unione di una quantità arbitraria di elementi di $T$ appartiene a $T$
  3. L’intersezione di due elementi di $T$ appartiene ancora a $T$

Un generico elemento di $T$ è detto sottoinsieme aperto di $X$.

Definizione (Spazio Topologico) Si dice spazio topologico una coppia $(X,T)$ dove $X$ è un insieme qualsiasi e $T$ è una topologia su $X$, secondo la precedente definizione.

Facciamo due esempi semplici di spazio topologico, ovvero la retta reale $\mathbb{R}$ dotata della classica distanza euclidea e l’insieme $A=\{1,2,3,4\}$ dotato di un’opportuna topologia che ora vedremo.

Sulla retta reale possiamo definire una topologia basata sugli intervalli $(a,b)\subset\mathbb{R}$. Infatti l’intersezione di due di questi è ancora un intervallo. Unione arbitraria di intervalli è ancora un intervallo e chiaramente l’insieme vuoto e anche $\mathbb{R}$ sono intervalli.

Magari è utile spendere due parole sul perchè $\mathbb{R}$ sia un intervallo, ma è abbastanza semplice. Si può infatti scriverlo come unione numerabile di intervalli ed è quindi un intervallo, ecco qui come si può fare:

$\mathbb{R} = \bigcup\limits_{n=1}^{+\infty} (-n,n)$,

per cui abbiamo mostrato che questa definisce una topologia su $\mathbb{R}$ e la possiamo scrivere come segue:

$T=\{(a,b): a<b, a,b\in\mathbb{R}\}$

Passiamo poi all’insieme $A$. Qui possiamo definire una topologia data dal seguente insieme:

$T=\{\emptyset,\{1,2,3,4\},\{1,2\},\{3,4\}\}$.

Infatti se tu guardi, l’intersezione di due elementi sta ancora in $T$, allo stesso modo la loro unione e gli insiemi banali appartengono all’insieme.

Una volta definito cosa vuol dire essere uno spazio topologico, vediamo quando due spazi topologici si possono dire omeomorfi:

Definizione (Omeomorfismo) Dati due spazi topologici $(X,T_1)$ e $(Y,T_2)$, si dice omeomorfismo tra $X$ e $Y$ una funzione continua $f:X\rightarrow Y$ che sia anche biiettiva e la cui inversa $f^{-1}:Y\rightarrow X$ è ancora continua.

Non voglio spaventarti inutilmente, infatti ecco una definizione molto intuitiva di omeomorfismo: due oggetti si dicono omeomorfi se, nel caso fossero fatti di gomma malleabile, fosse possibile rimodellare il primo oggetto per ottenere il secondo senza però eseguire operazioni come lo strappo o il taglio.

Ecco perché la topologia è chiamata geometria del foglio di gomma 😉

Bene, ora penso ti sia chiaro il senso dell’immagine qui sopra, infatti da un punto di vista topologico una tazza da caffè e una ciambella sono la stessa cosa. Su questi oggetti si è solito utilizzare la topologia dello spazio $\mathbb{R}^3$ nei quali essi vivono e sono immersi, ma non è importante approfondire questo concetto al momento, se però ti interessa lascia un commento all’articolo dicendomelo che così ci scriverò un articolo in futuro.

Giusto per non farci mancare nulla, rimanendo sul tema topologia faccio una piccola parentesi per parlarti del buco della ciambella 😉

Intuitivamente si può capire come la presenza di buchi nelle superfici, viste come spazi topologici, sia un invariante topologico, ovvero qualcosa che non cambia tra spazi che sono tra loro omeomorfi.

Infatti, come vedi, la tazza ha un buco nel manico, mentre la ciambella ha un buco al centro. In termini più formali i buchi, per superfici orientabili(e quindi più in generale spazi topologici con particolari proprietà), vengono caratterizzati da ciò che è detto genere di una superificie, che nel caso del toro e della tazza è $g=1$.

Ma non voglio dilungarmi oltre su questo tema, se può interessarti il concetto di genere e la famosa formula di Eulero, ecco qui un bel link di approfondimento: Caratteristica di Eulero

Ah…se possono interessarti questi temi nella mia tesi triennali li avevo spiegati abbastanza in maniera estesa, la puoi scaricare da qui: Tesi Triennale : Una panoramica sulla teoria ergodica e i biliardi.

Equazione del toro come superficie $\mathbb{T}\subset\mathbb{R}^3$

Per rappresentare il toro nel paragrafo qui sopra ho usato un’equazione in forma parametrica perché molto più comoda (o comunque di intuitiva comprensione), ma ora vedremo diversi modi per definire il toro in termini di espressione matematica.

In questo paragrafo andremo a vedere l’equazione parametrica e l’equazione cartesiana del toro. Partiamo da quella parametrica che, secondo me, è più facile da ricavare partendo dalla definizione di toro che abbiamo dato poche righe più in alto.

Supponiamo che $r$ sia il raggio della circonferenza $a\equiv a’$ che abbiamo rappresentato sopra e che $R$ sia il raggio della circonferenza dove vivono i centri delle circonferenze del precedente tipo, ovvero quella in mezzo alla ciambella 🙂 . Bene, se noi vogliamo individuare un punto sulla prima delle due circonferenze, è chiaro che basta fissare un angolo $v\in[0,2\pi)$ e siamo a posto, analogamente per i punti sulla seconda circonferenza, per i quali possiamo usare un altro angolo $u\in[0,2\pi)$.

Cosa vuol dire? Vuol dire che per ogni punto della superficie del toro possiamo univocamente associare una coppia di angoli $(u,v)\in[0,2\pi)\times[0,2\pi)=S^1\times S^1$, ovvero la parametrizzazione che andremo a definire tra poco è una funzione di questa forma:

$\varphi: [0,2\pi)\times [0,2\pi) \rightarrow \mathbb{T}\subset \mathbb{R}^3 $ dove $\varphi(u,v) = (x(u,v),y(u,v),z(u,v))$.

Vediamo ora come si può ottenere intuitivamente la seguente parametrizzazione, che è proprio l’equazione parametrica classica del toro

$\varphi(u,v) = ((R+r\cos{v})\cos{u},(R+r\sin{v})\cos{u},r\sin{u}).$

La cosa più ragionevole da fare, a parer mio, è fissare un punto sulla circonferenza verticale, ovvero un angolo $v\in[0,2\pi)$. A questo punto se noi proiettiamo sul piano $x-y$ la circonferenza orizzontale definita in corrispondenza di quel punto, otteniamo una circonferenza centrata nell’origine e di raggio opportuno, come puoi vedere in figura qui sotto:

Ora possiamo vedere come si può descrivere questa circonferenza rossa e poi possiamo lavorare sulla rimanente componente lungo $z$. Di sicuro essendo una circonferenza orizzontale, andremo ad utilizzare l’angolo $u$ e quindi il tutto sarà della forma $(\rho(v)\cos{u},\rho(v)\sin{u},0)$, dove dobbiamo però trovare il corretto raggio $\rho(v)$ che è chiaramente dipendente in qualche modo dall’angolo della circonferenza sulla verticale $v$.

Nel grafico qui sopra possiamo vedere, visto che ho tolto il toro, come ricavarci ciò che ci serve ovvero $\rho(v)$. Infatti ci basta calcolare la lunghezza del segmento $\bar{AB}$ e sottrarla ad $R$:

$\overline{AB} = r\cos{\beta} = r\cos{(180-v)} = -r\cos{v}$

segue che $\rho(v) = R+r\cos{v}$. Eccoci quindi ad aver parametrizzato la circonferenza proiettata sul piano $x-y$, ottenendo questa espressione:

$\tilde{\varphi}(u,v) = ((R+r\cos{v})\cos{u},(R+r\cos{v})\sin{u},0)$.

Ma ora è praticamente fatta, infatti ci basta “tirare su” la nostra circonferenza sul corretto piano $z=c(v)$. Ma questo piano lo possiamo vedere facilmente dal grafico che ho riportato qui sopra. Infatti è lo stesso dove vive il segmento $\overline{AB}$!

Questo piano è $z=r\sin{\beta} = r\sin{v}$. Ottimo, abbiamo ora l’intera parametrizzazione, come desiderato:

$\varphi(u,v) = \tilde{\varphi}(u,v) + (0,0,r\sin{v}) = ((R+r\cos{v})\cos{u},(R+r\cos{v})\sin{u},r\sin{v})$

Per concludere questa sezione, vediamo l’equazione cartesiana senza ricavarla, poi andremo a verificare che la forma parametrica soddisfa l’equazione cartesiana per completezza. In giro sul web e nei libri è più probabile trovare questa formula cartesiana ricavata piuttosto che quella parametrica, ecco perché ho deciso di fare la scelta opposta 😉

Il toro può essere definito implicitamente come il seguente luogo di punti:

$\mathbb{T} = \{(x,y,z)\in\mathbb{R}^3 : (R-\sqrt{x^2+y^2})^2+z^2=r^2\}$

Vediamo subito che questa vale nel caso della formula parametrica che abbiamo appena ricavato:

$\sqrt{x^2+y^2} = \sqrt{(R+r\cos{v})^2\cos^2{v} + (R+r\cos{v})^2\sin^2v} = R+r\cos{v}$

Quindi otteniamo $(R-\sqrt{x^2+y^2})^2=r^2\cos^2{v}$ che sommato a $z^2=r^2\sin^2{v}$ ci dà esattamente $r^2$.

Rappresentazione due dimensionale con relazione di equivalenza

Ne abbiamo fatti di progressi da inizio articolo! Complimenti se sei arrivato a leggere fin qui 😉 Mi farebbe molto piacere se lo condividessi con i tuoi amici, magari potrebbe essere interessante anche per loro!

Ora andiamo a vedere come sia possibile rappresentare il toro sul piano, utilizzando una relazione di equivalenza. Anche in questo caso ci sarà di grande utilità la costruzione che hai fatto con il pezzettino di plastica all’inizio (l’hai fatta vero?! 🙂 ).

Ricordiamo un attimo i passaggi:

  • Abbiamo identificato, incollandoli, i due lati verticali $b\equiv b’$
  • Nel cilindro senza tappi risultante, abbiamo identificato le due circonferenze chiudendo il tubo a ciambella, ovvero incollando $a\equiv a’$. Siamo anche stati attenti a non attorcigliare il tubo, altrimenti avremmo ottenuto qualcosa di molto più strano 😉

Ottimo! Rappresentare il toro sul piano, ovvero definire il cosiddetto TORO PIATTO, significa proprio indurre una relazione di equivalenza tra le due coppie di lati del quadrato di partenza.

Ti ricordo al volo che cos’è una relazione di equivalenza, nel caso non lo ricordassi o non l’avessi mai sentita nominare.

Dato un insieme $A=\{x_1,…,x_n\}$, si dice relazione di equivalenza su $A$ una relazione che soddisfa le seguenti proprietà:

  • Riflessività: Ogni elemento $x_i$ è in relazione con se stesso
  • Simmetria: Se l’elemento $x_i$ è in relazione con $x_k$, allora anche $x_k$ è in relazione con $x_i$
  • Transitività: Se $x_i$ è in relazione con $x_j$ e $x_j$ è in relazione con $x_k$, allora anche $x_i$ è in relazione con $x_k$

Un esempio semplice di relazione di equivalenza che puoi definire sui numeri naturali è la seguente: Due numeri naturali sono in relazione tra loro se sono entrambi pari o entrambi dispari. Per esercizio ti consiglio di verificare le 3 proprietà in questo caso, è una cosa veloce 😉

Bene, noi stiamo proprio andando a definire una relazione di equivalenza tra gli infiniti punti dei due segmenti $a$ e $a’$ e similarmente sui due segmenti $b$ e $b’$, incollandoli.

Ecco qui sopra rappresentato il nostro toro piatto. Come mai oltre a colorare i segmenti per rappresentare le identificazioni a 2 a 2 ho usato dei vettori (frecce) invece che dei segmenti?

Beh, semplice! Perché non vogliamo solo identificarli in quanto “insieme di punti” ma vogliamo anche mantenere l’ordine con cui sono posizionati, per evitare di ottenere poi attorcigliamenti o deformazioni strane quando si va a replicare questa identificazione incollando effettivamente i lati.

Figata, no?! Bene, questa costruzione ci sarà davvero importante qui di seguito, dove andremo a vedere qualcosina sulle superfici di traslazione e sui biliardi a tavolo quadrato. Ti dico qualche pillola di ciò che avevo studiato per la tesi della triennale, che era proprio sui biliardi e se la vuoi puoi scaricarla da qui.

Traslazione sul toro e biliardi

Ora parleremo di biliardi, si proprio quello con cui giochi con i tuoi amici il venerdì sera 😉 . Chiaramente i biliardi che andremo a vedere sono ideali, ovvero senza attrito e con urti perfettamente elastici con le pareti del tavolo, e i tavoli su cui si può giocare (da bravi matematici) possono avere le più svariate forme ed essere addirittura illimitati.

Nel campo della teoria dei biliardi dinamici la ricerca è molto attiva anche attualmente e i progressi stanno arrivando molto lentamente, perché è un campo molto complicato. Ti basti pensare che ci sono problemi aperti anche semplici, per esempio non si sa quali siano (e se esistano sempre) le traiettorie periodiche nei biliardi su un tavolo triangolare con un angolo ottuso (maggiore di $90^°$).

In queste prossime righe andremo andremo ad iniziare a studiare i biliardi quadrati, perché la dinamica su questi può essere associata ad una dinamica sul toro, interessante no?! 😉

Intanto ti suggerisco di guardare questo video che avevo fatto a riguardo qualche tempo fa:

Ma torniamo a noi!

Quindi abbiamo questo tavolo quadrato, l’idea è che se abbiamo una traiettoria che incide una parete con un certo angolo, grazie al fatto che il biliardo è ideale, andrà a rimbalzare con lo stesso angolo della parte opposta. Puoi vedere questa cosa nell’immagine qui sotto, andando a concentrarti sul primo segmento, del quadrato in basso a sinistra, $\overline{EF}$ e poi sulla parte tratteggiata.

Per esempio questa è una traiettoria periodica nel biliardo. Ma cosa sono gli altri quadrati?

Questa è una costruzione nota come Costruzione di Katok-Zemliakov. L’idea di questa costruzione è che appena una traiettoria incontra una parete e cambia direzione, possiamo riflettere il quadrato sul lato colpito dalla traiettoria e proseguire in linea retta la traiettoria invece di rifletterla nel biliardo originale.

Per costruzione quindi ogni lato di ogni copia del biliardo é identificato con esattamente un lato di un’altra copia del biliardo. Ecco che si inizia ad intravedere il toro.

Infatti se tu guardi, il lato $\overline{CB}$ è sia lato destro del primo quadrato ma anche sinistro del secondo quadrato, che sono quindi identificati come avevamo fatto con $a\equiv a’$ all’inizio dell’articolo.

Allo stesso modo abbiamo che il lato $\overline{CD}$, che è il secondo ad essere colpito dalla reale traiettoria ed è il lato superiore del primo quadrato, verrà identificato con $\overline{CD’}$, che è il lato inferiore del terzo quadrato.

Non mi aspetto di averti chiarito questa costruzione, se l’hai capita però sono contento 😉 , però la cosa importante è che capisca l’importanza di quello che stiamo facendo. Infatti in questo modo abbiamo semplificato notevolmente la dinamica della pallina del biliardo, rendendola di per sè estendibile all’infinito come una retta ed essendo poi in grado anche di risalire ai punti di contatto reali di questa traiettoria con il biliardo originale.

Per concludere ti chiedo uno sforzo mentale. Se passiamo da questa costruzione sul piano ad una visualizzazione tridimensionale, ci credi che questa retta non è altro che una curva nel toro che si ottiene incollando i lati identificati?

GEORG CANTOR: Quanto è infinito l’infinito?


L’infinito! Nessun altro problema ha mai scosso così profondamente lo spirito umano; nessuna altra idea ha stimolato così proficuamente il suo intelletto; e tuttavia nessun altro concetto ha maggior bisogno di chiarificazione che quello di infinito

D. Hilbert

Quanti sono i numeri naturali?

Infiniti!

Bene, ma…”quanto” infiniti?

Cantor fu forse il primo a porsi una tale domanda, e fu il primo a trovare una risposta.

Georg Cantor (1845-1918), matematico tedesco, anche se nato a San Pietroburgo, conseguì il dottorato a Berlino nel 1867 con una tesi sulla teoria dei numeri.

Spinto dall’eminente matematico dell’epoca Eduard Heine (famoso il teorema di Heine-Cantor in analisi; per chi volesse farsi una risata Heine Cantor (Alejandro math parody)), che ne riconobbe le grandi capacità, Cantor prese l’abilitazione come privatdozent (professore indipendente) ad Halle, presentando uno scritto sulle serie trigonometriche. All’epoca questo era un argomento di grande interesse per i matematici e i fisici, stimolati dalla scoperta fatta ad inizio ‘800 da Fourier che sotto determinate condizioni una serie trigonometrica può convergere a qualsiasi limite, o quasi. (Se vuoi saperne di più abbiamo scritto un articolo sulla trasformata di Fourier)

Nel suo scritto Cantor cercava di scoprire sotto quali condizioni due serie distinte convergevano allo stesso limite. Per farlo si trovò a dover trovare un modo per considerare nella loro interezza i punti in cui le funzioni analizzate si “comportano male” (per esempio i punti di discontinuità).

Cantor inizia così a sviluppare come disciplina autonoma la Mengenlehre: la teoria degli insiemi.

Ci si potrebbe chiedere quale sia la necessità di dover considerare un insieme infinito di punti nella sua interezza, vedremo oltretutto che questo comporta molti risultati a prima vista paradossali. Allora perché farlo? Il fatto è che trattare un insieme infinito come un’entità unica è analogo ad allontanarsi dallo schermo della televisione: guardando da vicino possiamo osservare i singoli pixel ma è impossibile scorgere le immagini nella loro completezza, è solo allontanandoci e considerando lo schermo nella sua interezza che possiamo decifrare l’immagine trasmessa.

Andando all’infinito, la complessità del finito si perde, e questo è un grande vantaggio!

Se ammettiamo l’esistenza di insiemi di infiniti elementi, allora possiamo iniziare a studiarne le proprietà. Per esempio, ha senso chiederci quanti elementi contiene un insieme infinito?

Secondo Cantor sì, e per farlo c’è bisogno di numeri diversi da quelli a cui siamo abituati, necessitiamo dei numeri transfiniti.

Che cos’è un numero transfinito?

Beh, intanto, cos’è un numero finito? Un’astrazione, un semplice prodotto dell’immaginazione. Si potrebbe dire ad esempio che il numero 2 è ciò che tutti gli insiemi di 2 elementi hanno in comune. Detta così sembra una definizione tautologica, e quindi non una buona definizione, ma possiamo renderla più rigorosa usando il concetto di cardinalità di un insieme.

Diciamo che due insiemi $A$ e $B$ hanno la stessa cardinalità se possiamo accoppiare i loro elementi in modo tale che ogni elemento di A sia associato esattamente ad un elemento di B e viceversa (una tale corrispondenza è detta biunivoca).

Vediamo per esempio la corrispondenza biunivoca tra l’insieme A degli Stati e l’insieme B delle capitali: ad ogni Stato è associata la sua capitale e viceversa ogni capitale è associata allo Stato in cui si trova. A e B hanno quindi la stessa cardinalità.

Osserviamo che abbiamo definito il concetto di stessa cardinalità senza avere avuto alcun bisogno di utilizzare la nozione di cardinalità, ma solo appoggiandoci alle funzioni biunivoche. Inoltre, un vantaggio di questo approccio è che possiamo usarlo anche per insiemi infiniti.

Ora possiamo dire che il numero 2 è la cardinalità di tutti gli insiemi che hanno la stessa cardinalità dell’insieme $\{a,b\}$.

Allo stesso modo possiamo inventarci un nuovo numero, il transfinito $\aleph_0$ (si legge Aleph-zero, Aleph è la prima lettera dell’alfabeto ebraico, il motivo del pedice zero sarà chiaro fra un momento) definito come la cardinalità di tutti gli insiemi che hanno la stessa cardinalità dell’insieme dei numeri naturali (tali insiemi sono detti numerabili).

In matematica però non possiamo dire che un tale numero $\aleph_0$ esiste se non è univocamente determinato, o se la sua esistenza genera una qualche contraddizione logica. (Si veda il Paradosso di Berry o il Paradosso di Richard per esempi di definizioni autocontraddittorie)

Un tale problema in realtà se l’era posto Leibniz(1646-1716), altro importantissimo matematico, ben 200 anni prima di Cantor. Leibniz si era accorto che accettando una tale definizione di cardinalità, è possibile giungere alla conclusione che i numeri naturali sono tanti quanti i numeri pari. In effetti è abbastanza semplice trovare una funzione biunivoca che associa ad ogni numero naturale un numero pari: $f(n)=2n$. Ma la stessa cosa accade anche per i numeri dispari ( $f(n)=2n-1$ ), o per i quadrati ( $f(n)=n^2$ ), e di questo se ne era accorto già Galileo a suo tempo. Tutto ciò è in evidente contraddizione col principio, già enunciato da Euclide, che afferma che “il tutto è maggiore di ogni sua parte”.

Fu proprio questo a far sì che Leibniz non accettasse l’esistenza dei numeri infiniti.

L’idea controintuitiva di Cantor

Ed è qui che entra in gioco Cantor: quando si trovò di fronte allo stesso dilemma, scelse la via opposta a quella di Leibniz. Creò un concetto di numero applicabile anche agli insiemi infiniti e accettò, contro l’intuizione, che un insieme infinito potesse avere la stessa cardinalità di un suo sottoinsieme proprio. Gli insiemi infiniti non sempre si comportano come quelli finiti, per spiegarlo Hilbert inventò il celebre paradosso dell’Hotel, su cui abbiamo scritto un articolo.

Questo passaggio è il più sottile e forse il più importante tra tutti quelli esposti in questo articolo. Non è questo infatti l’unico caso in cui la matematica porta a conclusioni che sfidano la nostra intuizione e si oppongono alla nostra esperienza quotidiana. L’abilità del matematico, e la genialità di Cantor nel nostro caso, sta nel discernere tra ciò che è contraddittorio col resto della matematica e cosa invece sembra contraddittorio per la nostra esperienza. Sono i momenti in cui qualcuno riesce a fare questa scelta in modo coerente quelli in cui si crea nuova matematica, e quindi nuova conoscenza. Che importa se definendo la cardinalità degli insiemi infiniti andiamo contro un principio che ci sembra evidente? Significa solo che l’evidenza ci ha ingannato!

Sono molteplici i casi in cui qualcuno ha sfidato un principio che sembrava ovvio per poi scoprire risultati importantissimi. (Pensate alla negazione del quinto postulato di Euclide e alle geometrie non euclidee!) E sono tantissimi i casi in cui la matematica porta a risultati paradossali per la nostra intuizione pur essendo assolutamente corretta.

Citando lo stesso Cantor: “L’essenza della matematica è la sua libertà”.

Torniamo ora alle sue scoperte matematiche. Dopo aver analizzato la corrispondenza biunivoca tra $\mathbb{N}$ e un suo sottoinsieme, prese in esame insiemi che erano, o sembravano, più grandi di quello dei numeri naturali: per esempio gli interi $\mathbb{Z}$, o i razionali $\mathbb{Q}$. Scoprì, con grande stupore, che anche questi insiemi potevano essere messi in relazione biunivoca con $\mathbb{N}$.

Per dimostrare che Q è numerabile basta ordinare i suoi elementi in una successione seguendo questo schema. Le frazioni in rosso sono quelle che non dobbiamo considerare, in modo che ogni numero razionale vi figuri una sola volta nella sua forma più semplice.

A questo punto tutto portava a pensare che se era possibile mettere in relazione biunivoca $\mathbb{N}$ con $\mathbb{Q}$, che sembrava molto più grande, allora sarebbe stato possibile trovare un modo per fare la stessa cosa con qualsiasi altro insieme infinito.

La grande conquista di Cantor fu quella di dimostrare che non è così: non è possibile trovare una biezione tra i numeri naturali e i numeri reali. Per farlo inventò un geniale metodo di dimostrazione che verrà poi sfruttato per raggiungere importantissimi risultati in matematica, logica e informatica durante tutto il ‘900.

Il metodo diagonale

Cantor parte con una classica assunzione per assurdo: supponiamo che i numeri reali siano numerabili. Osserviamo che possiamo considerare l’intervallo $(0,1)\subset\mathbb{R}$ in quanto, se questo non è numerabile, non lo sarà nemmeno $\mathbb{R}$.

Supponendo che $(0,1)$ sia numerabile, stiamo dicendo che esiste una funzione biunivoca che associa ad ogni numero reale in $(0,1)$ un numero naturale, e viceversa.

Allora possiamo costruire una lista con in prima posizione un numero reale $r_1$ associato a 1 tramite la nostra funzione biunivoca, in seconda $r_2$ associato a 2, e così via…

Esprimendo ogni numero reale attraverso la sua espansione decimale, una delle possibili liste si presenterà più o meno così:

$r_1=$ 0, 3 3 3 3 3 3 3
$r_2=$ 0, 3 1 4 1 5 9 2
$r_3=$ 0, 1 0 0 0 0 0 0
$r_4=$ 0, 0 1 2 3 4 5 6
$r_5=$ 0, 2 7 1 8 2 8 4
$r_6=$ 0, 5 7 7 2 1 5 6
0,

Se l’intervallo $(0,1)$ è numerabile allora questa lista infinita dovrà contenere tutti i numeri reali appartenenti ad esso, ma Cantor si accorse che è sempre possibile trovare un numero che non abbiamo nella lista. Consideriamo il numero $d$, definito in modo che abbia tutte le cifre differenti dalla sequenza sulla diagonale, per esempio ottenuta sommando a tutte le cifre della diagonale +1.

$r_1$ 0, 4 (3+1) 3 3 3 3 3 3
$r_2$ 0, 3 2 (1+1) 4 1 5 9 2
$r_3$ 0, 1 0 1 (0+1) 0 0 0 0
$r_4$ 0, 0 1 2 4 (3+1) 4 5 6
$r_5$ 0, 2 7 1 8 3 (2+1) 8 4
$r_6$ 0, 5 7 7 2 1 6 (5+1) 6
0,

Allora $d := 0,421436…$ Questo numero è indubbiamente un numero reale compreso fra 0 e 1, ma non fa parte della lista che avevamo! Infatti è diverso da $r_1$ per la prima cifra decimale, da $r_2$ per la seconda…da $r_k$ per la $k-$esima. Abbiamo trovato quindi un numero reale dell’intervallo $(0,1)$ che non sta nella lista, contraddicendo l’ipotesi che nella nostra lista ci fossero tutti. Allora $(0,1)$ non è numerabile, e a maggior ragione non lo sarà $\mathbb{R}$. (Osserviamo che se anche aggiungessimo “manualmente” alla lista il numero $d$ appena trovato, potremmo comunque ripetere il ragionamento diagonale e trovare un $d’$ che non appartiene alla nuova lista)

Q.E.D.

(Incidentalmente, con questo risultato, Cantor trovò anche una nuova dimostrazione dell’esistenza di numeri trascendenti)

Teorema di Cantor

Quindi esistono almeno due infiniti diversi! L’infinito dei numeri naturali $\aleph_0$ e l’infinito dei numeri reali, che Cantor indica con la lettera $C$ (iniziale di Continuo), strettamente maggiore di $\aleph_0$.

Ma il genio di Cantor non si fermò qui! Intuì che il metodo diagonale usato poteva essere esteso a tutti i casi in cui, partendo da un insieme $A$ qualsiasi, si usano elementi di $A$ per etichettare un qualche insieme particolare composto da elementi di $A$.

Scopre quello che oggi è chiamato Teorema di Cantor: dato un qualsiasi insieme $A$, $\mathcal{P}(A)$ ha cardinalità strettamente maggiore di $A$. (Dove $\mathcal{P}(A)$ indica l’insieme delle parti di $A$, ossia l’insieme che ha per elementi tutti i sottoinsiemi di $A$)

La dimostrazione è un po’ astratta, ma si tratta solo di condensare il ragionamento diagonale:

Di nuovo, per assurdo, supponiamo che esista una funzione biunivoca $f-$ tra $A$ e $\mathcal{P}(A)$. In particolare, tale funzione dovrà essere suriettiva, ossia ogni elemento del codominio $\mathcal{P}(A)$ (ogni sottoinsieme di $A$ ) deve essere associato ad un elemento di $A$. Consideriamo il sottoinsieme di $A$ definito come $ \Delta $ ={$a \in A$ : $a ∉ f(a)$ }. $\Delta$ è costituito da tutti gli elementi $a$ di $A$ che non sono elementi del proprio corrispondente secondo $f$. $\Delta$ è un sottoinsieme di $A$, quindi, visto che abbiamo supposto che $f$ sia suriettiva, deve esserci un elemento $\delta$ di $A$ tale che $f(\delta)=\Delta$. Chiediamoci ora, $\delta$ è un elemento di $\Delta$? Se lo è, allora deve soddisfare la definizione di $\Delta$, cioè $\delta$ non deve essere elemento del suo corrispondente $f(\delta)=\Delta$. Ma allora $\delta\in\Delta$ e e solo se $\delta\not\in\Delta$. Da cui l’assurdo. Allora l’ipotesi iniziale è falsa: non esiste una funzione suriettiva tra $A$ e $\mathcal{P}(A)$.

Q.E.D.

Provato questo teorema abbiamo in mano un metodo effettivo per costruire, a partire da un qualunque insieme, un insieme più grande: il suo insieme delle parti.

Quindi da $\mathbb{N}$ possiamo costruire $\mathcal{P}(\mathbb{N})$, che ha cardinalità strettamente maggiore di $\mathbb{N}$ (è possibile dimostrare che ha la stessa cardinalità dei reali $C$), a partire da $\mathcal{P}(\mathbb{N})$ possiamo reiterare il procedimento per costruire un insieme più grande (che ha la cardinalità dell’insieme delle funzioni da $\mathbb{R}$ a $\mathbb{R}$)…

È la prova che esistono infiniti infiniti, e che non esiste un insieme più grande di tutti!

Ma allora come c’è una successione infinita di numeri finiti 1, 2, 3, …, così esiste una successione infinita di transfiniti $\aleph_0$, $\aleph_1$, $\aleph_2$, …, ognuno maggiore del precedente.

Cantor arrivò anche a sviluppare un’aritmetica coerente dei numeri transfiniti, nella quale ad esempio: $\aleph_0 + \aleph_1 = \aleph_1$ e $\aleph_1 \cdot \aleph_2 = \aleph_2$.

(la proprietà dell’hotel di Hilbert corrisponde al fatto che $\aleph_0 + \aleph_0 = \aleph_0$; per non riuscire ad accomodarli nelle stanze, dovrebbero arrivare $\aleph_1$ clienti)

Le critiche e la depressione di Cantor

Potete immaginare, con delle idee così rivoluzionarie, riguardo un soggetto come l’infinito, che abbraccia matematica, filosofia e teologia, quante critiche dovette fronteggiare Cantor.

Cantor stesso, che era cattolico, quando scoprì che esistevano più infiniti, si recò in Vaticano preoccupato perché, se la Chiesa cattolica identificava Dio con l’infinito, nel momento in cui di infiniti ce ne erano tanti, allora si poteva immaginare che i suoi lavori dessero supporto al politeismo. (Lascio un link per chi volesse approfondire questo aspetto)

Ma Cantor non fu osteggiato soltanto dalla filosofia e dalla religione, anche illustri matematici dell’epoca erano ostili alle sue idee. Sembra che Kronecker, suo vecchio insegnante all’università, cercò di impedire la pubblicazione dei suoi lavori. Al tempo girava anche un aneddoto, probabilmente apocrifo, secondo il quale persino il grande Henri Poincaré avrebbe detto che “un giorno la teoria degli insiemi di Cantor sarà considerata una malattia dalla quale si è guariti”.

Oltre a tutto questo Cantor fu ossessionato per tutta la vita dall’ Ipotesi del Continuo: aveva scoperto che C era maggiore di $\aleph_0$, quindi doveva necessariamente essere uno tra $\aleph_1$, $\aleph_2$, … ma quale di questi? Cantor ipotizzò che fosse proprio $\aleph_1$, e quindi che non esistesse nessun insieme dalla cardinalità compresa tra $\aleph_0$ e C.

Nonostante anni e anni di tentativi, non riuscì mai a dimostrare o confutare la sua ipotesi, e alla luce delle nostre conoscenze, è molto triste leggere di come cadde in depressione anche per questo motivo. Basandosi sui teoremi di incompletezza di Gödel, infatti, nel 1963 Paul Cohen riuscì a dimostrare che l’ipotesi del continuo non è decidibile nel sistema assiomatico di Zermelo-Fraenkel.

Significa che il povero Cantor passò anni alla ricerca di una dimostrazione che non poteva esistere, forse l’incubo più spaventoso per un matematico.

Cantor durante la sua vita, per diverse ragioni, non ultima la sua precaria salute mentale, soffrì di diversi crolli nervosi, che lo portarono ad accantonare la matematica per lunghi periodi, per occuparsi di filosofia, teologia e soprattutto della questione shakespeariana. Era convinto che in realtà le opere attribuite a Shakespeare fossero state scritte da Francis Bacon e pubblicò diversi scritti a riguardo.

Georg Cantor morì per una crisi cardiaca nel 1918, lasciandoci in eredità la teoria degli insiemi, sulla quale poggia le fondamenta tutta la matematica moderna.

Concludiamo come abbiamo iniziato, con una citazione del grande Hilbert:

“Nessuno riuscirà a cacciarci dal Paradiso che Cantor ha creato per noi”


Se ti interessano altri articoli dedicati ai grandi matematici eccone un paio:

Il sogno di Leibniz: la caratteristica universale

Poincaré: l’ultimo universalista

Meccanica quantistica (Parte 1) : introduzione storica e motivazioni

Vi siete mai chiesti come facciamo a studiare gli atomi, il principio di funzionamento di un transistor o perché avviene una reazione nucleare? Bene, a tutti questi (ed infiniti altri) quesiti molto diversi tra di loro si può rispondere grazie alla meccanica quantistica!

Questa parte della fisica moderna è ricca di fenomeni e concetti spesso controintuitivi o apparentemente illogici, e ci pone davanti a delle difficoltà che prima non si ponevano, come, ad esempio, nei concetti di misura di un sistema o di determinismo delle leggi fisiche. Esistono molti ottimi testi ed articoli divulgativi, come ad esempio:

Nella serie di articoli che sto scrivendo, a differenza di quelli divulgativi in generale, non mi soffermerò tanto sui concetti fisici, bensì farò cenno alla matematica fondamentale per potersi approcciare a questa branca.

Al contrario della meccanica classica, la fisica quantistica ha un formalismo matematico molto complicato per i “non addetti ai lavori”. Proverò a rendere questi strumenti matematici meno complicati da capire dopo queste letture.
In questo primo articolo inizierò spiegando brevemente la storia e gli esperimenti che hanno portato a formalizzare queste nuove leggi e per quali sistemi si deve considerare una trattazione quantistica e perché. Nei prossimi articoli, invece, verrà sviluppato il formalismo matematico.

C’è tanta carne da mettere sul fuoco, quindi, partiamo!

La nascita della meccanica quantistica

Per inquadrare una teoria, bisogna conoscere un minimo la storia che ci sta dietro. Cerchiamo dunque di dare un po’ di nozioni per iniziare.

Siamo a fine 1800 e la società attuale si scontra con grandi novità tecniche e scientifiche, in particolare, quelle che ci interessano sono due: le macchine a vapore, il cui studio porterà prima alla termodinamica e poi, grazie all’immenso e visionario lavoro di Ludwig Boltzmann, alla formulazione della fisica statistica (di cui spero di poter parlare meglio in futuro), e la scoperta dell’elettromagnetismo, che vedrà completa la sua descrizione teorica con la formulazione delle equazioni di Maxwell.
Si pensava così che l’interpretazione della realtà fosse totalmente completa, ma fu proprio lì che iniziarono i problemi…

Purtroppo, c’erano molti risultati che non quadravano con le teorie al tempo conosciute. Gli spettroscopisti, ovvero i fisici sperimentali che si occupano di studiare l’interazione tra la radiazione elettromagnetica e la materia, non riuscivano a spiegarsi l’esistenza di alcune delle righe di emissione da parte di atomi, e i decadimenti nucleari erano un mistero per tutta la comunità scientifica dell’epoca. Tuttavia, un esperimento ha portato per la prima volta all’introduzione del concetto di “quanto”; si tratta del problema della radiazione emessa da un corpo nero, anche detta “catastrofe ultravioletta”. Qui c’è un buon video (anche se in inglese) che spiega questo fenomeno:

Cerchiamo di introdurre il concetto di corpo nero, per capire meglio la natura di questa cosidetta catastrofe. Una delle proprietà principali di un materiale è quella di assorbire (o emettere) radiazione elettromagnetica. Questo fenomeno si chiama radiazione termica, poiché coinvolge uno scambio tra energia di radiazione del campo elettromagnetico intorno al corpo e l’energia termica dovuta al moto delle particelle contenute nel materiale (esempio classico: una sbarra di ferro diventa rossa se riscaldata).

Ma la lunghezza d’onda di questa radiazione, che nel caso del visibile si tratta del colore, come dipende dalla temperatura? Ci si chiede, cioè, quale sia la distribuzione dell’energia di radiazione emessa in funzione della frequenza emessa. L’emissione di radiazione del corpo avviene simultaneamente alla radiazione incidente sull’oggetto stesso. Questa radiazione incidente sul materiale può essere riflessa o assorbita dal sistema, e se non c’è riflessione di alcuni tipo da parte dell’oggetto, esso si chiama corpo nero, e viene considerato un emettitore perfetto, in quanto il suo spettro dipende solo dalla radiazione emessa. Un esempio tipo di corpo nero è un forno per pizze con una finestrella molto piccola, tale che l’unica luce che si vede è quella della legna presente all’interno.

Le teorie prima citate prevedevano che un corpo nero in equilibrio termico avrebbe dovuto emettere radiazione elettromagnetica con energia sempre maggiore all’aumentare della frequenza del sistema, fino ad arrivare ad un’intensità di emissione infinita (cosa totalmente illogica da un punto di vista fisico). Questa descrizione si deve al risultato ottenuto da J. Stefan e L. Boltzmann, che dimostrarono che l’emittanza spettrale $M_\nu^b (T)$, che rappresenta l’energia totale irradiata da un corpo nero a temperatura $T$ per unità di area e di tempo ad un certo intervallo di frequenza $\nu$ è uguale a:

$$M_\nu^b (T)= \sigma T^4$$

Dove $\sigma$ rappresenta una costante universale.

Gli esperimenti mostravano, invece, che l’intensità diminuiva all’aumentare della frequenza intorno alle lunghezze d’onda dell’ultravioletto (da qui il nome del fenomeno).

Grafico della radianza in funzione della lunghezza d’onda. Si vede bene la differenza tra il risultato aspettato classico (in nero) e i risultati effettivi.

Questo problema fu risolto da Max Planck nel 1900 ipotizzando che l’energia potesse essere scambiata solo a “pacchetti” chiamati quanti di energia la cui introduzione (da lui vista solo come un trucchetto matematico) portava alla soluzione del problema. L’energia di questi quanti doveva essere pari a $E=h\nu=\frac{hc}{\lambda}$ dove $c$ è la velocità della luce, $\lambda$ è la lunghezza d’onda del quanto, e qui, per la prima volta, si trova l’uso della cosidettà costante di Planck $h$, costante che in seguito sarà fondamentale per la fisica quantistica.

Secondo passo teorico fondamentale è la spiegazione dell’effetto fotoelettrico da parte di Albert Einstein nel 1905, in quel caso il buon Albert ipotizzò per primo (vincendo il nobel per questo, ah sapevi che il premio nobel per la matematica non esiste? Leggi qui se ti interessa sapere il perchè: Nobel matematica) che in realtà quei quanti di energia si chiamavano fotoni ed erano le particelle che costituivano la luce e le onde elettromagnetiche in generale. Al tempo per la luce ci si basava su un dualismo onda-particella.

Tante altre scoperte portarono a conferme sull’esistenza di nuovi “strani” fenomeni. Come ad esempio l’esperimento di Stern-Gerlach che introdusse il concetto di spin di una particella, quantità non presente classicamente. Per capire però il motivo che ha portato all’uso della matematica che vogliamo introdurre servirà parlare del lavoro di Luis de Broglie.

Egli partì dal concetto di energia del fotone di Einstein/Planck e aggiunse l’ipotesi che le particelle, come la luce, esibiscono anche un comportamento ondulatorio (per le onde vale $p=\frac{c}{\nu}$, con $p$ quantità di moto) e così da queste 2 formule derivò una grandezza tipica della particella detta lunghezza d’onda di de Broglie:

$$\lambda=\frac{h}{p}$$

Questo concetto strano, ma verificabile, fu trovato sperimentalmente molto dopo grazie all’esperimento della doppia fenditura per gli elettroni. Venne mostrato che facendo passare un fascio di elettroni attraverso una doppia fenditura, la cui larghezza è confrontabile con la lunghezza di de Broglie dell’elettrone, si otteneva, in uno schermo posto a distanza, una figura di diffrazione identica a quella che formavano le onde elettromagnetiche. Bel colpo per de Broglie!

Schema dell’esperimento della doppia fenditura per elettroni.

Dopo questo sicuramente vi starete chiedendo: “Ma in tutto questo la matematica cosa c’entra?”.
Bene, è il momento di introdurre in nostri due eroi, ovvero Erwin Schrödinger e Werner Heisenberg. Essi cercarono di formalizzare matematicamente tutti i vari concetti e fenomeni di questa fisica strana. Il primo, basandosi sulla lunghezza d’onda di de Broglie, formulò la meccanica delle onde, mentre il secondo introdusse la meccanica delle matrici. Questi due formalismi sono stati poi dimostrati essere equivalenti e infine unificati dal lavoro successivo di Paul Dirac. Ed è su questi ultimi lavori che, fondamentalmente, si basa la descrizione della fisica quantistica fino ad oggi e che (spero) riuscirò a spiegarvi nelle prossime puntate.

Quando e per cosa si usa la meccanica quantistica

Bene adesso che abbiamo il quadro generale storico cerchiamo di capire quando si deve usare la meccanica quantistica e per cosa.

Se si vuole sapere quando usarla bisogna inquadrare se il nostro problema è microscopico o meno. Come si fa a distinguere se un sistema è microscopico o meno? Quanto “piccolo” deve essere per valere il problema?
La risposta è “dipende dal caso” e in ciò si può sfruttare il concetto di lunghezza d’onda di de Broglie!

Definizione di sistema quantistico: Se le dimensioni del nostro sistema fisico (si può pensare a usare il diametro d, inteso come distanza massima) sono confrontabili con $\lambda$ di de Broglie allora deve essere trattato quantisticamente.

Per chi conoscesse un po’ di meccanica analitica potrebbe trovare interessante quest’altra definizione, oggi attribuita perlopiù a Richard Feynman, che stima quando un sistema è quantistico in base alle energie in gioco (anche se questa affermazione è parecchio brutale).

Definizione alternativa: Se l’azione $S[x(t)]$ del sistema considerato è confrontabile con $\hbar=\frac{h}{2\pi}$ allora deve essere trattato quantisticamente.

Qui, volendo semplificare molto, si può stimare l’azione di un sistema moltiplicando la quantità di moto $p=mv$ con le dimensioni del corpo preso in considerazione. Il confronto con $\hbar$ darà il verdetto sul comportamento del sistema.

Facciamo un piccolo esempio. Trattiamo l’esperimento della doppia fenditura ipotizzando di avere delle sferette di massa $1g$ e che si muovono a $1cm/s$. Se calcoliamo$\lambda$:

$$\lambda=\frac{h}{p}=10^{-13} cm$$

Cioè $10^{-13}$ volte più piccola del raggio del protone! Per valori opportuni delle larghezze delle fenditura nello schermo si troverebbero solo tracce delle due sferette lanciate nello stesso punto. Un po’ come lanciare palle da tennis su una rete a buchi molto grossi praticamente. Se provate a fare gli stessi calcoli con le dimensioni dell’elettrone troverete tutt’altro risultato.

La domanda che possiamo porci adesso è: “Ma questa teoria per cosa la usiamo?”

Bhe, la risposta sarebbe per infinite situazioni. Ma se dobbiamo attenerci ad applicazioni tangibili forse vi stupirà che si usa per spiegare praticamente tutti i fenomeni che hanno a che fare con la materia.
Ad esempio: perché esistono oggetti solidi come metalli, cristalli e simili, perché esistono le molecole e come interagiscono tra loro, come fanno le stelle a bruciare idrogeno per funzionare, come interagisce la luce con la materia… si potrebbe andare avanti fino a domani!

Conclusioni

Bene adesso abbiamo appena appena visto i concetti base che ci servono a capire cosa sia la fisica quantistica e come sia nata. Una domanda che potreste porvi è: “perché è nata solo di “recente” rispetto alle teorie classiche?”, beh la risposta è semplice: dal 1900 circa si è riusciti ad accedere al mondo microscopico, con tutti i suoi segreti.

Dalla prossima volta andremo nel pieno del motivo per cui ho deciso di scrivere questa serie di articoli: sviscerare la matematica dietro a questa bellissima branca. Alla prossima volta con spazi di Hilbert e operatori!