Teoria del caos: Introduzione e primi esempi

Il caos è la scienza delle sorprese, dei fenomeni non lineari e imprevedibili. Ci insegna ad aspettarci l’inaspettabile. Mentre la scienza tradizionale ha a che fare con fenomeni supposti prevedibili come la gravità, l’elettricità, o le reazioni chimiche, la Teoria del caos tratta situazioni non lineari che sono effettivamente impossibili da prevedere o controllare, come la turbolenza, il tempo metereologico, il mercato delle azioni e molto altro.

Teoria del caos

La parola caos deriva dal latino chaos, e indirettamente dal greco χάος (che contiene la stessa base χα- dei verbi χαίνωχάσκω «essere aperto, spalancato»). In matematica e in fisica, pur mantenendo un collegamento metaforico con il suo significato ordinario, il termine ha assunto un’importanza crescente, specialmente nello studio dei sistemi complessi: si dice che un sistema tende al caos quando le sue leggi di evoluzione comportano, dopo un certo caratteristico intervallo di tempo, comportamenti del tutto imprevedibili e irregolari, mancando qualsiasi forma di correlazione tra stati successivi.

Caos non è Caso

La Teoria del caos è un campo di studi relativamente recente e spesso frainteso nell’uso comune. La parola caos siamo abituati ad usarla abbastanza di frequente, chiaramente non con significato matematico. Tuttavia questa varietà di significati porta talvolta a fraintendere il termine nel campo matematico. Ti sarà capitato più volte di dire “La mia scrivania è un caos” volendo dire che “Nella mia scrivania ci sono tante cose messe a caso” o qualcosa di simile. In matematica però Caos e Caso sono due termini che si discostano, e di molto!

Le dinamiche caotiche non hanno necessariamente un carattere casuale/probabilistico nascosto. In questi sistemi se conosciamo l’ESATTA posizione attuale o iniziale, possiamo trarre tutte le informazioni che desideriamo sull’evoluzione futura della dinamica. Il problema non è quindi la casualità della dinamica o della posizione attuale, il problema è alla radice: conoscere la condizione dalla quale il sistema inizia ad evolvere. Nel caso di dinamiche semplici (o meglio, non caotiche), anche conoscendo la condizione iniziale in maniera approssimativa, si possono comunque trarre delle rilevanti considerazioni sull’evoluzione della dinamica. Nel caso di sistemi dinamici caotici, invece, nel tempo il comportamento relativo a condizioni iniziali approssimativamente simili a quella di nostro interesse sono COMPLETAMENTE IRRILEVANTI.

Ecco perchè spesso si coinvolge il termine caos deterministico. Partendo da un problema apparentemente semplice, il moto di tre corpi che interagiscono tra loro attraverso la forza di gravità (che tratteremo approfonditamente in un seguente articolo), Poincaré arrivò a descrivere in modo chiaro il fenomeno del caos deterministico, scrivendo nel 1903: “una causa piccolissima che sfugga alla nostra attenzione determina un effetto considerevole che non possiamo mancare di vedere, e allora diciamo che l’effetto è dovuto al caso. Se conoscessimo esattamente le leggi della natura e la situazione dell’universo all’istante iniziale, potremmo prevedere esattamente la situazione dello stesso universo in un istante successivo. Ma se pure accadesse che le leggi naturali non avessero più alcun segreto per noi, anche in tal caso potremmo conoscere la situazione iniziale solo approssimativamente. Se questo ci permettesse di prevedere la situazione successiva con la stessa approssimazione, non ci occorrerebbe di più e dovremmo dire che il fenomeno è stato previsto. Ma non è sempre così; può accadere che piccole differenze nelle condizioni iniziali ne producano di grandissime nei fenomeni finali. Un piccolo errore nelle prime produce un errore enorme nei secondi. La previsione diviene impossibile”.

Si parla quindi di determinismo nel senso che se sapessimo esattamente il nostro punto di partenza avremmo la certezza della dinamica evolutiva che lo caratterizza, mentre di caos per sottolineare la forte sensibilità ai dati iniziali e all’impossibilità di approssimarli per trarre informazioni rilevanti per la dinamica in analisi.

La teoria del caos ha come oggetto di interesse i sistemi dinamici, ma non tutti. La particolarità dei sistemi che seguono un comportamento caotico è la loro forte sensibilità ai dati iniziali. Ovvero sistemi in cui partendo da due situazioni iniziali di poco diverse, hanno un evoluzione nel tempo COMPLETAMENTE diversa.

Per non lasciare troppe idee astratte vagare nell’aria, iniziamo subito con un esempio chiaro da un punto di vista visivo, ma non per questo di semplice analisi matematica (la cui trattazione rimando ad un articolo/video futuro) : il PENDOLO DOPPIO.

Pendolo doppio

Il pendolo lo conosci giusto? Ci sono varie modalità per costruire un pendolo, tutte più o meno vicine alla situazione ideale che di solito si studia sui libri. In quest’ultima si suppone la totale assenza di attrito con l’aria solitamente. Si considera in particolare un punto materiale (massa supposta concentrato in un punto nello spazio) vincolato ad una corda/asta rigida e lasciato muoversi partendo da una condizione inziale, la cui altezza non verrà raggiunta periodicamente ma mai superata.

Per complicare questo sistema dinamico ci si può muovere in varie direzioni, si può analizzare un pendolo 3-dimensionale in cui la particella non è vincolata a muoversi in sole due direzioni o considerare un pendolo forzato da agenti esterni, oppure si può analizzare situazioni a queste simili. Quella che però ci interessa per i nostri scopi è il pendolo doppio.

Pendolo doppioQuesto oggetto si costruisce semplicemente vincolando un altra asta rigida/corda al punto materiale del pendolo semplice. Ancorando all’estremità di questo nuovo “braccio” una nuova massa puntiforme. Avrai già intuito che in questo prolungamento si può giocare sulla lunghezza del braccio, sulla variazione della massa e così via per ottenere i comportamenti più strani. Però forse non immagini che in realtà non serve nemmeno giocare troppo per ottenere un comportamento strano, caotico in particolare.

Prima di analizzare un attimo l’evoluzione, ti consiglio di guardarti questo video per farti un’idea del fenomeno 😉

Già qui nel video è interessante vedere la particolare evoluzione della dinamica. Ma di per sè non è evidente alcun comportamento caotico in questo video, il caos lo si vede sensibilimente confrontando l’evoluzione di due dinamiche che partono da condizioni iniziali molto vicine. La dinamica in questi due casi simili inizialmente, è completamente diversa all’avanzare del tempo. Guarda qua per fartene un’idea 😉 :

Non posso negarti di aver guardato il video 3-4 volte, è davvero spettacolare come fenomeno ma soprattutto controintuitivo. Noi siamo abituati a pensare a dipendenze continue dai dati iniziali, siamo abituati a pensare che oggetti che seguono le stesse leggi e partono vicini, rimarranno vicini. Il che è esattamente il contrario rispetto al pendolo doppio!

Il fenomeno della caoticità è molto ampio e approfondibile sotto vari aspetti, per non mettere troppa carne al fuoco chiudiamo qui questo articolo. Spero che l’esempio e il confronto tra caos e caso ti siano chiari. In caso di qualsiasi dubbio puoi contattarmi a [email protected] oppure lascia pure un commento qui sotto 😉

Ti ricordo che se ti piace guardare i video, Mathone ha anche un canale Youtube, lo puoi trovare qui: CANALE

Fonti e approfondimenti

Dio gioca a dadi?  La nuova matematica del caos

La fisica del caos. Dall’effetto farfalla ai frattali

What is Chaos theory?

Sistemi dinamici e caos deterministico

Sistemi Dinamici Caotici – Liceo Locarno

Teoria del caos.pdf – Studio Legale Masciarelli

2 commenti

  • duso giuseppe

    penso al tentativo fatto da alcuni ricercatori di esprimere le dinamiche sociali matematicamente. Mi ricordo il tempo speso da giovane per ricercare l’equilibrio dei mercati in un’economia aperta.

    • Davide Murari

      Interessante, per caso hai qualche foglio di ricerca o risorsa da indicarmi per vedere qualcosa di ciò che hai nominato? Giusto per sapere a che punto siamo ora con gli studi matematici in quel campo

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.